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Abstract—By employing time-varying proximal functions, adaptive subgradient methods (ADAGRAD) have improved the regret bound

and been widely used in online learning and optimization. However, ADAGRAD with full matrix proximal functions (ADA-FULL) cannot

handle large-scale problems due to the impractical Oðd3Þ time and Oðd2Þ space complexities, though it has better performance when

gradients are correlated. In this paper, we propose two efficient variants of ADA-FULL via a matrix sketching technique called frequent

directions (FD). The first variant named as ADA-FD directly utilizes FD to maintain and manipulate low-rank matrices, which reduces

the space and time complexities to OðtdÞ and Oðt2dÞ respectively, where d is the dimensionality and t � d is the sketching size. The

second variant named as ADA-FFD further adopts a doubling trick to accelerate FD used in ADA-FD, which reduces the average time

complexity to OðtdÞ while only doubles the space complexity of ADA-FD. Theoretical analysis reveals that the regret of ADA-FD and

ADA-FFD is close to that of ADA-FULL as long as the outer product matrix of gradients is approximately low-rank. Experimental results

demonstrate the efficiency and effectiveness of our algorithms.

Index Terms—Online learning, frequent directions, adaptive subgradient methods

Ç

1 INTRODUCTION

OLINE learning refers to the process of answering a
sequence of questions given answers to previous ques-

tions, which enjoys an attractive combination of computa-
tional efficiency and theoretical guarantees [2]. Recently, it
has received ever-increasing attention due to the emergence
of large-scale applications such as online classification [3], [4],
[5], [6], [7], online advertisements recommendation [8], [9],
[10], online metric learning [11], [12], [13], [14], online matrix
factorization [15], [16], [17], [18], online optimization [19], [20],
[21], [22], [23], and online anomaly detection [24], [25]. Adap-
tive subgradientmethods (ADAGRAD),which employ proxi-
mal functions that adapt to the geometry of the data observed
in earlier iterations, are popular for online learning and opti-
mization [26]. According to the type of proximal functions,
ADAGRAD can be divided into learning with full matrix
proximal functions (ADA-FULL) and learning with diagonal
matrix proximal functions (ADA-DIAG). In contrast to ADA-
FULL, ADA-DIAG has been successfully applied to many
large-scale applications because of its light computations and
storages.

However, the diagonal matrix maintained in ADA-DIAG
only contains limited information of gradient outer prod-
ucts. This shortcoming causes that the regret of ADA-DIAG
is worse than that of ADA-FULL when the high-dimen-
sional data are dense and have an approximately low-rank
structure. In consideration of this dilemma, Duchi et al. [26]

proposed an open question concerning whether we can effi-
ciently use full matrices in the proximal functions. To solve
this problem, Krummenacher et al. [27] utilized random
projections to approximate ADA-FULL, and developed two
methods, namely ADA-LR and RADAGRAD. Compared
with ADA-FULL, ADA-LR has the same space complexity
Oðd2Þ and a slightly reduced time complexity Oðtd2Þ, where
d is the dimensionality and t � d is the number of random
projections. Due to the quadratic dependence on d, ADA-
LR is impractical for high-dimensional data, though it is
equipped with a formal regret bound. In contrast, the time
and space complexities of RADAGRAD are linear in d, but
it lacks theoretical guarantees owing to further approxima-
tions. In our recent work [28], we also utilized random pro-
jections to accelerate ADA-FULL, and proposed ADA-DP
that has complexities linear in d. However, its theoretical
guarantees are non-deterministic, and the regret bound con-
tains additional terms that never vanish.

To tackle the above limitations, we develop two efficient
variants of ADA-FULLwhich are also principled. The compu-
tational bottleneck of ADA-FULL is to store the outer product
matrix of gradients and compute its square root in each round.
We note that a similar bottleneck also exists in other second
order methods such as online Newton step (ONS) [29], and
recently matrix sketching techniques have been used to
reduce the computational cost of ONS [30]. Motivated by pre-
vious work, we first propose to directly employ frequent
directions [31] to approximate the outer productmatrix of gra-
dients in ADA-FULL. By utilizing the low-rank structure, our
first efficient variant of ADA-FULL, namedADA-FD, reduces
the space complexity from Oðd2Þ to OðtdÞ and the time com-
plexity from Oðd3Þ to Oðt2dÞ, where t is the sketching size,
which implies both the space and time complexities of ADA-
FD are linear in the dimensionality d. Then, we further pro-
pose a much faster variant of ADA-FULL, named ADA-FFD,
by accelerating frequent directions used in ADA-FD, which
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only needs to double the space complexity. Assuming t � ffiffiffi
d

p
,

ADA-FFD reduces the average time complexity to OðtdÞ that
is linear in both the dimensionality d and the sketching size t.

Moreover, because the idea of ADAGRAD can be incorpo-
rated into either the primal-dual subgradient method [32] or
the composite mirror descent method [33], we also develop
two efficient methods for both ADA-FD and ADA-FFD
according to the type of subgradient methods, and prove that
the regret bounds of our methods are close to that of ADA-
FULL. The slight differences in the regret bounds are caused
by the approximation error of frequent directions or fast fre-
quent directions, and vanish when the sketching size is larger
than the rank of gradient outer products. More generally,
when the outer product matrix of gradients is approximately
low-rank, a small number of sketching is sufficient to prevent
the differences from affecting the order of the regret bounds.
To verify the efficiency and effectiveness of our ADA-FD and
ADA-FFD, we conduct numerical experiments on online
regression, online classification, training convolutional neural
networks (CNN), and fine-tuning much deeper CNN. The
results turn out that our ADA-FD and ADA-FFD perform
comparablywithADA-FULL, but aremuchmore efficient.

2 RELATED WORK

In this section, we briefly review the related work in adap-
tive subgradient methods and matrix sketching.

2.1 ADAGRAD

Adaptive subgradient methods describe and analyze an
apparatus for learning the proximal functions which are
modified according to data observed in earlier iterations.
This property significantly simplifies choosing the step size
while ensures regret guarantees as good as the proximal
functions tuned manually. In the following, we provide a
brief introduction of ADAGRAD for the primal-dual sub-
gradient method [32] and the composite mirror descent
method [33].

At each round t ¼ 1; 2; . . . ; T , the online learner predicts
a point bbt 2 Rd, and then the adversary reveals a composite
function FtðbbÞ ¼ ftðbbÞ þ ’ðbbÞ, where ft and ’ are convex.
The learner suffers a loss FtðbbtÞ for this round, and the goal
of the learner is to minimize the regret that is defined as

RðT Þ ¼
XT
t¼1

FtðbbtÞ �
XT
t¼1

Ftðbb�Þ;

where bb� is the fixed optimal predictor. Let gt be a particular
vector in the subdifferential set @ftðbbtÞ of the function ft.
The outer product matrix of gradients is defined as Gt ¼Pt

i¼1 gig
>
i , and we further define a symmetric matrix Ht,

which has the following two choices:

Ht ¼ dId þ diagðGtÞ1=2 ADA-DIAG

dId þG
1=2
t ADA-FULL

(
;

where d > 0 is a parameter making Ht invertible. The proxi-
mal term is given byCtðbbÞ ¼ 1

2 hbb;Htbbi, and let

BCtðx; yÞ ¼ CtðxÞ �CtðyÞ � hrCtðyÞ; x� yi

denote the Bregman divergence associated with Ct. Let h >
0 be a fixed step size and �gt ¼

Pt
i¼1 gi. In each iteration, the

primal-dual subgradient method updates by

bbtþ1 ¼ argmin
bb

h
1

t
�gt;bb

� �
þ h’ðbbÞ þ 1

t
CtðbbÞ

� �

¼ �hH�1
t �gt; if ’ ¼ 0:

(1)

And the composite mirror descent method updates by

bbtþ1 ¼ argmin
bb

h gt;bb
� �þ h’ðbbÞ þBCtðbb;bbtÞ

	 

¼ bbt � hH�1

t gt; if ’ ¼ 0:
(2)

Because the storage complexity of Gt is Oðd2Þ and the time
complexity of finding its square root is Oðd3Þ, ADA-FULL is
impractical for large-scale problems.

To reduce the complexities of ADA-FULL, Krumme-
nacher et al. [27] proposed two methods based on the fast
randomized singular value decomposition (SVD) [34] to
approximate the proximal term CtðbbÞ. Let P 2 Rt�d be the
random matrix of the subsampled randomized Fourier
transform. They first used the following steps to update bbt:

Gt ¼ Gt�1 þ gtg
>
teGt ¼ GtP

> Random Projection

QR ¼ eGt QR-decomposition

B ¼ Q>Gt;USV> ¼ B SVD

bbtþ1 ¼ bbt � hVðS1=2 þ dItÞ�1V>gt;

(3)

and the resulting algorithm is refereed to as ADA-LR. Note
that the space and time complexities of ADA-LR are respec-
tively Oðd2Þ and Oðtd2Þ, which prevent ADA-LR from being
practical for high-dimensional data. By introducing more
randomized approximations, they presented a more scal-
able algorithm RADAGRAD that performs the following
updates:

egt ¼ Pgt Random ProjectioneGt ¼ eGt�1 þ gteg>t
½Qt;Rt� ¼ qr updateðQt�1;Rt�1; gt; egtÞ
B ¼ eG>

t Qt;USW> ¼ B SVD

V ¼ QtW; gt ¼ hðgt �VV>gtÞ
bbtþ1 ¼ bbt � hVðS1=2 þ dItÞ�1V>gt � gt;

(4)

where qr_update means QR decomposition with the rank-
one update. In this case, RADAGRAD reduces the space
and time complexities to OðtdÞ and Oðt2dÞ respectively.
Unfortunately, it is a heuristic method and lacks theoretical
guarantees. When ftðbbtÞ ¼ lðbb>t xtÞ where xt is a data vector
independent from the learning algorithm, we recently pro-
posed ADA-DP [28] based on random projections to attain
theoretical guarantees and keep complexities linear in d.
However, due to the randomness of random projections,
the regret bound of ADA-DP is non-deterministic and is
worse than ADA-FULL even when t ¼ d.
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2.2 Matrix Sketching and Frequent Directions

For any given matrix A 2 Rt�d, the purpose of sketching is
to generate a matrix B 2 Rt�d where t � t is the sketching
size such that A 	 B or A>A 	 B>B. There are many matrix
sketching techniques including frequent directions [31],
[35], [36], random projection [37], [38], [39], and column
selection [40]. Frequent directions [31] is a deterministic
matrix sketching technique by extending the well-known
algorithm for approximating item frequencies in streams

[41]. Let B ¼ ½b1;b2; . . . ;bt�> ¼ 0t�d where t � minft; dg.
For any given matrix A ¼ ½a1; a2; . . . ; at�>, frequent direc-
tions processes each row of A as follows:

bt ¼ ai;USV
> ¼ B SVD

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
2 � sIt

q
V> where s ¼ S

2
tt;

and products a sketch matrix B. Because the time complex-
ity of processing each row is Oðt2dÞ that is dominated by
computing the SVD of B, the total time complexity of fre-
quent directions is Oðt2dtÞ which suffers quadratic depen-
dence on the sketching size t. To further reduce it to OðtdtÞ,
Ghashami et al. [31] have proposed fast frequent directions
(FFD) at the expense of doubling the space complexity. Let
B ¼ ½b1;b2; . . . ;b2t�> ¼ 02t�d. Fast frequent directions pro-
cesses each row of A as follows:

Insert ai into a zero valued row of B

if B has no zero valued rows then

USV> ¼ B SVD

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðS2 � sI2t; 0Þ

q
V> where s ¼ S2

tt

endif ;

(5)

where the if statement is only triggered once every t þ 1
rows. Therefore, the number of computing the SVD of B is
only t=ðt þ 1Þ and the total time complexity of fast frequent
directions is Oðt2dðt=tÞÞ ¼ OðtdtÞ.

Recently, the techniques of matrix sketching have been
used by Luo et al. [30] to accelerate online Newton step [29].
They studied ONS that updates by

At ¼ aId þ
Xt
i¼1

higig
>
i and bbtþ1 ¼ bbt �A�1

t gt; (6)

where a > 0 and ht > 0 are some parameters for general
convex functions, and used matrix sketching techniques to
construct a low-rank approximation of the second order infor-
mation. Motivated by Luo et al. [30], our work employs fre-
quent directions to calculate a low-rank approximation of the
full matrix, which obviously reduces the storage and time
complexities of ADA-FULL. Compared to the approximation
algorithm used by Krummenacher et al. [27], frequent direc-
tions has two advantages which are deterministic theoretical
properties and easy implementations.

3 EFFICIENT VARIANTS OF ADA-FULL

In this section, we first introduce our two efficient variants
of ADA-FULL and the corresponding theoretical results.
Then, we compare our work with Krummenacher et al. [27]

and Luo et al. [30]. To facilitate presentations, we consider
the case ’ ¼ 0, and our methods can be extended to the gen-
eral case ’ 6¼ 0.

3.1 Adaptive Online Learning via FD

Define Ct ¼ ½g1; g2; . . . ; gt�> 2 Rt�d, where each row is a gra-
dient vector. The outer product matrix of gradients can be
calculated as

Gt ¼
Xt
i¼1

gig
>
i ¼ C>

t Ct:

To accelerate the computation of H�1
t , we take advantage of

frequent directions to produce a low-rank approximation of
Ct denoted by St ¼ ½st1; st2; . . . ; stt�> 2 Rt�d. Then we can
redefine Ht in the proximal term as

Ht ¼ dId þ ðS>t StÞ1=2:

Let the SVD of St be St ¼ USV> where U 2 Rt�t;S 2 Rt�t

and V 2 Rd�t, then we have ðS>t StÞ1=2 ¼ VSV>. By Wood-
bury formula [42], we have

H�1
t ¼ðdId þVSV>Þ�1

¼ 1

d

�
Id �VðdIt þ SÞ�1SV>�:

With the above procedures, we propose our first efficient
variant of ADA-FULL, named as adaptive online learning
via frequent directions (ADA-FD). Then, we first consider
incorporating ADA-FD into the primal-dual subgradient
method. According to the update rules in (1), in the tth
round, our algorithm performs the following updates:

st�1
t ¼ gt; �gt ¼ �gt�1 þ gt

USV> ¼ St�1; st ¼ S2
tt SVD

S
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
2 � stIt

q
; St ¼ S

0V>

bbtþ1 ¼ � h

d

�
�gt �VðdIt þ S

0Þ�1S
0V>�gt

�
:

(7)

The detailed procedures of ADA-FD for the primal-dual
subgradient method are summarized in Algorithm 1, and
this method is named as adaptive dual averaging via fre-
quent directions.

Moreover, we incorporate ADA-FD into the composite
mirror descent method. According to the update rules in
(2), in the tth round, our algorithm performs the following
updates:

st�1
t ¼ gt

USV> ¼ St�1; st ¼ S
2
tt SVD

S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � stIt

q
; St ¼ S0V>

bbtþ1 ¼ bbt �
h

d

�
gt �VðdIt þ S

0Þ�1S
0V>gt

�
:

(8)

The detailed procedures of ADA-FD for the composite mir-
ror descent method are summarized in Algorithm 2, and
this method is named as adaptive mirror descent via fre-
quent directions.
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3.1.1 Computational Complexity

First, the space complexities of our two methods are OðtdÞ
caused by the maintenance of St;U;V. And the time com-
plexities of our two methods are Oðt2dÞ caused by step 5 in
each algorithm which contains the SVD. Thus, both of them
are linear in the dimensionality d. Second, compared with
the update rules of ADA-LR (3) and RADAGRAD (4), our
update rules (7) and (8) do not need random projection and
are more simple. Third, when ’ 6¼ 0, the computational cost
of H�1

t can still be reduced dramatically, though the updat-
ing of bbt may not have a closed-form solution.

Algorithm 1. Adaptive Dual Averaging via FD

1: Input: h > 0; d > 0; t, S0 ¼ 0t�d, �g0 ¼ 0, bb1 ¼ 0
2: for t ¼ 1; . . . ; T do
3: Receive the gradient gt ¼ rftðbbtÞ
4: Insert gt into the last row of St�1 and �gt ¼ �gt�1 þ gt
5: Compute USV> ¼ St�1, st ¼ S

2
tt

6: Compute St ¼ S0V> where S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � stIt

q
7: bbtþ1 ¼ � h

d

�
�gt �VðdIt þ S0Þ�1S0V>�gt

�
8: end for

3.1.2 Theoretical Guarantees

Compared with RADAGRAD, a significant advantage of
our methods is that they are equipped with formal theoreti-
cal guarantees similar to ADA-FULL. We present regret
bounds for Algorithms 1 and 2 in the following two theo-
rems, respectively.

Theorem 1. Adaptive dual averaging via frequent directions
ensures

RðT Þ � d

2h
kbb�k22 þ

1

2h
trðG1=2

T Þkbb�k22

þ hmax 1;
maxt�Tkgtk2 þ

ffiffiffiffiffiffi
DT

p

d


 �
trðG1=2

T Þ

þ
PT

t¼1

ffiffiffiffiffi
st

p
2h

maxt�Tkbbtþ1k22;
(9)

where DT ¼PT
i¼1 si.

Theorem 2. Adaptive mirror descent via frequent directions
ensures

RðT Þ � d

2h
kbb�k22 þ

1

2h
maxt�Tkbb� � bbtk22trðG1=2

T Þ

þ hmax 1;

ffiffiffiffiffiffi
DT

p
d


 �
trðG1=2

T Þ

þ t
PT

t¼1

ffiffiffiffiffi
st

p
2h

maxt�Tkbb� � bbtk22;
(10)

where DT ¼PT
i¼1 si.

For comparisons, let us introduce the theoretical guaran-
tees of ADA-FULL as follows.

Theorem 3. (Theorem 7 of Duchi et al. [26]) Provided with d 

maxt�Tkgtk2, ADA-FULL incorporated into the primal-dual
subgradient method ensures

RðT Þ � d

2h
kbb�k22 þ

1

2h
trðG1=2

T Þkbb�k22 þ htrðG1=2
T Þ:

ADA-FULL incorporated into the composite mirror descent
method ensures

RðT Þ � s

2h
kbb�k22 þ

1

2h
max
t�T

kbb� � bbtk22trðG1=2
T Þ þ htrðG1=2

T Þ:

Compared with the Theorem 3, we confirm that our
methods enjoy the regret bound close to that of ADA-
FULL, and we point out the slight differences as follow-
ing. First, the regret bounds of our two methods contain

an additional term, respectively

PT

t¼1

ffiffiffiffi
st

p
2h maxt�Tkbbtþ1k22 and

t
PT

t¼1

ffiffiffiffi
st

p
2h maxt�Tkbb� � bbtk22. According to Cauchy-Schwarz

inequality andDT ¼PT
i¼1 si, we have

XT
t¼1

ffiffiffiffiffi
st

p �
ffiffiffiffi
T

p
ffiffiffiffiffiffiffiffiffiffiffiffiXT
t¼1

st

vuut ¼
ffiffiffiffiffiffiffiffiffiffi
TDT

p
;

which means the additional term does not affect the order of
the regret bounds when DT is small. Second, our two

bounds magnify the third term by max 1;
maxt�T kgtk2þ

ffiffiffiffiffi
DT

p
d


 �

and max 1;

ffiffiffiffiffi
DT

p
d


 �
respectively, which does not change the

order of the regret bounds when DT is small. Let Ck
t denote

the minimizer of kCt � Ck
t kF over all rank k matrices.

According to the property of frequent directions, we have

DT � kCT � Ck
Tk2F=ðt � kÞ;

for any k < t, which means DT is small when the outer
product matrix of gradients is approximately low-rank.
Moreover, when GT is low-rank and rankðGT Þ ¼ r, we have
DT ¼ 0 by choosing t ¼ rþ 1.

Additionally, according to Proposition 2 of Krummenacher
et al. [27], the regret bound of ADA-LR is also close to that of
ADA-FULL. However, it only holds with high probability
and requires t 
 Oðlog dÞ. In contrast, the regret bounds of
ourmethods are deterministic and hold for any integer t > 0.

Algorithm 2. Adaptive Mirror Descent via FD

1: Input: h > 0; d > 0; t, S0 ¼ 0t�d, bb1 ¼ 0
2: for t ¼ 1; . . . ; T do
3: Receive the gradient gt ¼ rftðbbtÞ
4: Insert gt into the last row of St�1

5: Compute USV> ¼ St�1, st ¼ S2
tt

6: Compute St ¼ S0V> where S0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 � stIt

q
7: bbtþ1 ¼ bbt � h

d

�
gt �VðdIt þ S

0Þ�1S
0V>gt

�
8: end for
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3.2 Adaptive Online Learning via FFD

Although the time complexity of ADA-FD is linear in the
dimensionality d, it still suffers the quadratic dependence
on the sketching size t. Motivated by the fast implementa-
tion of frequent directions (5), we further accelerate our
ADA-FD by doubling the sketching size and reducing the
number of time-consuming computations. However, fast
frequent directions cannot be directly applied to our meth-
ods, because it only computes the SVD of the sketch matrix
St once every t þ 1 iterations while for updating the deci-
sion, our methods need to compute the square root of S>t St
and the inverse of Ht by the SVD of St in each iteration. As a
result, besides the doubling trick used in fast frequent direc-
tions, we carefully design a more efficient strategy to com-
pute the SVD of St as explained below, which is motivated
by the idea of incremental SVD [43].

Algorithm 3. Adaptive Dual Averaging via FFD

1: Input: h > 0; d > 0; t; r0 ¼ 0;V0 ¼ 0d�2t ;M0 ¼ 02t�2t; �g0 ¼
0;bb1 ¼ 0

2: for t ¼ 1; . . . ; T do
3: Receive the gradient gt ¼ rftðbbtÞ
4: Compute �gt ¼ �gt�1 þ gt and g0 ¼ Vt�1ðV>

t�1gtÞ
5: if g0 6¼ gt then
6: Set rt�1 ¼ rt�1 þ 1 and vt�1

rt�1
¼ gt�g0

kgt�g0k2
7: end if
8: Set rt ¼ rt�1;Vt ¼ Vt�1; st ¼ 0
9: ComputeMt ¼ Mt�1 þ ðV>

t�1gtÞðV>
t�1gtÞ>

10: Compute USU> ¼ Mt

11: bbtþ1 ¼ � h
d

�
�gt �VtUðdI2t þ S1=2Þ�1S1=2U>V>

t �gt
�

12: if rt ¼ 2t then
13: Set st ¼ Stt;Mt ¼ maxðS� stI2t; 0Þ;Vt ¼ VtU
14: Set rt ¼ t � 1 and fvtiji ¼ rt þ 1; . . . ; 2tg to be zero
15: end if
16: end for

According to the doubling trick, the size of St is changed
from t � d to 2t � d. Moreover, instead of directly maintain-
ing St, we maintain two matricesMt and Vt which satisfy

M
1=2
t V>

t ¼ St 2 R2t�d;

where Mt 2 R2t�2t is a symmetric matrix and Vt ¼
½vt1; vt2; . . . ; vt2t� 2 Rd�2t consists of rt � 2t orthonormal vec-
tors and 2t � rt zero vectors. For t ¼ 0, we simply set

r0 ¼ 0;V0 ¼ 0d�2t;M0 ¼ 02t�2t:

In each iteration t ¼ 1; . . . ; T , after receiving the gradient gt,
we first compute

g0 ¼ Vt�1ðV>
t�1gtÞ:

If g0 6¼ gt, we set rt�1 ¼ rt�1 þ 1 and

vt�1
rt�1

¼ gt � g0

kgt � g0k2
;

where ðvt�1
rt�1

Þ>vt�1
i ¼ 0 for any 1 � i < rt�1. Then, we have

Vt�1V
>
t�1gt ¼ gt, which leads to

Vt�1Mt�1V
>
t�1 þ gtg

>
t

¼ Vt�1Mt�1V
>
t�1 þVt�1V

>
t�1gtg

>
t Vt�1V

>
t�1

¼ Vt�1ðMt�1 þV>
t�1gtg

>
t Vt�1ÞV>

t�1:

So, we can set rt ¼ rt�1;Vt ¼ Vt�1 and computeMt as

Mt ¼ Mt�1 þ ðV>
t�1gtÞðV>

t�1gtÞ>:
Now, we can directly utilize the above two matrices Vt and
Mt to update the decision. Specifically, we first efficiently
compute the SVD ofMt as

USU> ¼ Mt:

Then, we have

ðStS>t Þ1=2 ¼ ðVtMtV
>
t Þ1=2

¼ ðVtUSU
>V>

t Þ1=2

¼ VtUS
1=2U>V>

t ;

which means that btþ1 can be computed efficiently with
Woodbury formula as in ADA-FD. Moreover, according to
fast frequent directions, if rt ¼ 2t, we need to make the last
t þ 1 rows of St equal to zero by computing

Mt ¼ maxðS� stI2t; 0Þ;Vt ¼ VtU;

where st ¼ Stt, and setting rt ¼ t � 1 and the right t þ 1
columns of Vt to be zero. In this way, the rank of M

1=2
t V>

t is
reduced to t � 1, and would grow to 2t in subsequent itera-
tions. So, there could exist cyclical changes about it.

With the above procedures, we propose our second effi-
cient variant of ADA-FULL, named as adaptive online learn-
ing via fast frequent directions (ADA-FFD). Furthermore, the
detailed procedures of ADA-FFD for the primal-dual subgra-
dient method and composite mirror descent method are sum-
marized inAlgorithms 3 and 4, respectively.

Algorithm 4. Adaptive Mirror Descent via FFD

1: Input: h > 0; d > 0; t; r0 ¼ 0;V0 ¼ 0d�2t;M0 ¼ 02t�2t; bb1 ¼ 0

2: for t ¼ 1; . . . ; T do
3: Receive the gradient gt ¼ rftðbbtÞ
4: Compute g0 ¼ Vt�1ðV>

t�1gtÞ
5: if g0 6¼ gt then
6: Set rt�1 ¼ rt�1 þ 1 and vt�1

rt�1
¼ gt�g0

kgt�g0k2
7: end if
8: Set rt ¼ rt�1;Vt ¼ Vt�1; st ¼ 0
9: ComputeMt ¼ Mt�1 þ ðV>

t�1gtÞðV>
t�1gtÞ>

10: Compute USU> ¼ Mt

11: bbtþ1 ¼ bbt � h
d

�
gt �VtUðdI2t þ S1=2Þ�1S1=2U>V>

t gt
�

12: if rt ¼ 2t then
13: Set st ¼ Stt;Mt ¼ maxðS� stI2t; 0Þ;Vt ¼ VtU
14: Set rt ¼ t � 1 and fvtiji ¼ rt þ 1; . . . ; 2tg to be zero
15: end if
16: end for

3.2.1 Computational Complexity

In each iteration, our Algorithms 3 and 4 need to compute
g0, vt�1

rt�1
, Mt, the SVD of Mt, and bbtþ1, the time complexities

of which are OðtdÞ, OðdÞ, OðtdÞ, Oðt3Þ, and OðtdÞ,
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respectively. Assuming t � ffiffiffi
d

p
, in each iteration, the total

time complexity of these computations isOðtdÞ. Besides these
computations, Algorithms 3 and 4 need to computeVt ¼ VtU
once every t þ 1 iterations, which causes the time complexity
of Oðt2dÞ. Therefore, in each iteration, the average time com-

plexities of Algorithms 3 and 4 are O tdTþt2dðT=tÞ
T

� �
¼ O tdð Þ

which is linear in both the dimensionality d and the sketching
size t. Meanwhile, the space complexities of Algorithms 3 and
4 are still OðtdÞ caused by the maintenance of Vt, because
ADA-FFD only doubles the sketching size of ADA-FD. Com-
pared with ADA-FD and RADAGRAD, our ADA-FFD fur-
ther reduces the time complexity to OðtdÞ while enjoys the
same space complexity ofOðtdÞ.

3.2.2 Theoretical Guarantees

Note that Algorithms 3 and 4 enjoy almost the same regret
bounds as Algorithms 1 and 2, respectively. For complete-
ness, we present the regret bounds of Algorithms 3 and 4 in
the following two theorems, respectively.

Theorem 4. Adaptive dual averaging via fast frequent directions
ensures

RðT Þ � d

2h
kbb�k22 þ

1

2h
trðG1=2

T Þkbb�k22

þ hmax 1;
maxt�Tkgtk2 þ

ffiffiffiffiffiffi
DT

p

d


 �
trðG1=2

T Þ

þ
PT

t¼1

ffiffiffiffiffi
st

p
2h

maxt�Tkbbtþ1k22;
(11)

where DT ¼PT
i¼1 si.

Theorem 5. Adaptive mirror descent via fast frequent directions
ensures

RðT Þ � d

2h
kbb�k22 þ

1

2h
maxt�Tkbb� � bbtk22trðG1=2

T Þ

þ hmax 1;

ffiffiffiffiffiffi
DT

p
d


 �
trðG1=2

T Þ

þ t
PT

t¼1

ffiffiffiffiffi
st

p
h

maxt�Tkbb� � bbtk22;
(12)

where DT ¼PT
i¼1 si.

According to the property of fast frequent directions
proved by Ghashami et al. [31], we still have

DT � kCT � Ck
Tk2F =ðt � kÞ; (13)

for any k < t. At first sight, (11) is the same as (9) in Theo-
rem 1 and (12) only doubles the last term of (10) in Theorem
2. However, the sketching size of ADA-FFD is 2t. For a fair
comparison, we should reduce it to t, which implies that t
in (12) and (13) would be replaced with t=2.

3.3 Discussions

We would like to emphasize the differences between our
work and Krummenacher et al. [27]. First, both ADA-LR
and RADAGRAD only consider the composite mirror descent

method, ignoring the primal-dual subgradient method. Sec-
ond, unlike random projections adopted in Krummenacher
et al. [27], our work makes use of frequent directions and fast
frequent directions that belong to deterministic matrix sketch-
ing techniques. As a result, the theoretical guarantees of our
methods are deterministic which are more robust than the
probabilistic regret bound of ADA-LR. Third, ourmethods are
very efficient in the sense that the time and storage complexi-
ties are linear in the dimensionality d, without losing the regret
bound. Especially, the time complexities of our Algorithms 3
and 4 are also linear in the sketching size t. By contrast, RADA-
GRAD only reaches similar complexities as our Algorithms 1
and 2while does not have theoretical justifications.

Next, we discuss the differences between our work and
Luo et al. [30]. First, our methods and Luo et al. [30] are
designed for different tasks. Our goal is to develop an effi-
cient variant of ADA-FULL, and the goal of Luo et al. [30] is
to accelerate ONS. Note that ADA-FULL is a data depen-
dent algorithm for general convex functions and ONS is
proposed to derive a logarithmic regret bound for exponen-
tially concave functions. Second, the theoretical analysis in
our work is obviously different from Luo et al. [30]. They
provide a regret bound of ONS with order Oð ffiffiffiffiffiffi

Td
p Þ for gen-

eral convex functions by setting ht ¼ Oð1= ffiffi
t

p Þ. Although its
update rules (6) can be reformulated as

Ht ¼ dId þ
Xt
i¼1

1ffiffi
i

p gig
>
i and bbtþ1 ¼ bbt � hH�1

t gt;

which is similar to ADA-FULL, its Oð ffiffiffiffiffiffi
Td

p Þ bound destroys
the data dependent property. Third, the main algorithm of
Luo et al. [30] can be regarded as a mirror descent method. In
contrast, our work proposes methods for both the primal-
dual subgradient method and composite mirror descent
method, respectively.

4 THEORETICAL ANALYSIS

In this section, we provide the proofs of Theorems 1 and 2
and omit the proofs of Theorems 4 and 5, because it is not
difficult to prove Theorems 4 and 5 in the same way.

4.1 Supporting Results

The following results are used throughout our analysis.

Lemma 1 (Variant of Proposition 2 in Duchi et al. [26]).
Let the sequence fbbtg be generated by Algorithm 1. We have

RðT Þ � 1

h
CT ðbb�Þ þ h

2

XT
t¼1

kf 0
tðbbtÞk2C�

t�1

þ
PT

t¼1

ffiffiffiffiffi
st

p
2h

maxt�Tkbbtþ1k22:

Lemma 1 can be regarded as a variant of Proposition 2 in
Duchi et al. [26], when the condition Ctþ1ðbbÞ 
 CtðbbÞ cannot
be met due to Htþ1gHt in this work. And it can be derived
from the proof of Proposition 2 in Duchi et al. [26] with slight
modifications to deal with Ctþ1ðbbÞlCtðbbÞ. We include the
proof for completeness.
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Proof. The conjugate dual of t’ðbbÞ þ 1
h
CtðbbÞ is defined by

F�
t ðgÞ ¼ supbb g;bbh i � t’ðbbÞ � 1

h
CtðbbÞ

� �
:

Thus, the gradient of F�
t ðgÞ can be calculated as

rF�
t ðgÞ ¼ argmin

bb
� g;bbh i þ t’ðbbÞ þ 1

h
CtðbbÞ

� �
: (14)

Because 1
h
CtðbbÞ is 1

h
-strongly convex with respect to the

norm k � kCt
, we have krF�

t ðxÞ � rF�
t ðyÞkCt

� hkx� ykC�
t

which means the function F�
t has h-Lipschitz continuous

gradients with respect to k � kC�
t
. Further, we have

F�
t ðyÞ � F�

t ðxÞ þ rF�
t ðxÞ; y� x

� �þ h

2
ky� xk2C�

t
: (15)

Both the identity (14) and the bound (15) were used in the
proof of Proposition 2 in Duchi et al. [26]. In order to com-
plete the proof, we introduce an inequality

XT
t¼1

fftðbbtÞ þ ’ðbbtÞ � ftðbb�Þ � ’ðbb�Þg

� 1

h
CT ðbb�Þ þ

XT
t¼1

gt;bbt

� �þ ’ðbbtÞ
	 
þF�

T ð��gT Þ;

(16)

from the proof of Proposition 2 in Duchi et al. [26] again.
Let St;S

0
t;Vt denote the values of S;S0;V in the tth

round of Algorithm 1. For each t ¼ 1; . . . ; T , we have

ðS>t StÞ1=2 � ðS>t�1St�1Þ1=2 þ ffiffiffiffiffi
st

p
VtV

>
t

¼ VtS
0
tV

>
t þ ffiffiffiffiffi

st
p

VtV
>
t � ðS>t�1St�1Þ1=2

� VtStV
>
t � ðS>t�1St�1Þ1=2

¼ ðS>t�1St�1 þ gtg
>
t Þ1=2 � ðS>t�1St�1Þ1=2

� 0;

which implies �CtðxÞ � �Ct�1ðxÞ þ
ffiffiffiffi
st

p
2 kxk22.

Thus, we have

F�
T ð��gT Þ ¼ � �gT ;bbTþ1

� �� T’ðbbTþ1Þ �
1

h
CT ðbbTþ1Þ

� � �gT ;bbTþ1

� �� T’ðbbTþ1Þ �
1

h
CT�1ðbbTþ1Þ

þ
ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22

� supbb � �gT ;bb
� �� ðT � 1Þ’ðbbÞ � 1

h
CT�1ðbbÞ


 �

� ’ðbbTþ1Þ þ
ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22

¼ F�
T�1ð��gT Þ � ’ðbbTþ1Þ þ

ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22;

which contains an additional term
ffiffiffiffiffi
sT

p
2h kbbTþ1k22 caused by

HTgHT�1 comparing with Duchi et al. [26].
Using the identity (14), the bound (15) and the inequal-

ity (16), we have

XT
t¼1

fftðbbtÞ þ ’ðbbtþ1Þ � ftðbb�Þ � ’ðbb�Þg

� 1

h
CT ðbb�Þ þ

XT
t¼1

gt;bbt

� �þ ’ðbbtþ1Þ
	 


þF�
T�1ð��gT Þ � ’ðbbTþ1Þ þ

ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22

� 1

h
CT ðbb�Þ þ

XT
t¼1

gt;bbt

� �þ ’ðbbtþ1Þ
	 


þF�
T�1ð��gT�1Þ � rF�

T�1ð��gT�1Þ; gT
� �

þ h

2
kgTk2C�

T�1
� ’ðbbTþ1Þ þ

ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22

¼ 1

h
CT ðbb�Þ þ

XT�1

t¼1

gt;bbt

� �þ ’ðbbtþ1Þ
	 


þF�
T�1ð��gT�1Þ þ

h

2
kgTk2C�

T�1
þ

ffiffiffiffiffiffi
sT

p
2h

kbbTþ1k22:

By repeating the above steps, we have

XT
t¼1

fftðbbtÞ þ ’ðbbtþ1Þ � ftðbb�Þ � ’ðbb�Þg

� 1

h
CT ðbb�Þ þ h

2

XT
t¼1

kgtk2C�
t�1

þ
XT
t¼1

ffiffiffiffiffi
st

p
2h

kbbtþ1k22
þF�

0ð��g0Þ:

Note that ’ðbbÞ ¼ 0 and F�
0ð0Þ ¼ 0. We complete the

proof. tu
Lemma 2 (Proposition 3 in Duchi et al. [26]). Let the

sequence fbbtg be generated by Algorithm 2. We have

RðT Þ � 1

h

XT�1

t¼1

½BCtþ1
ðbb�;bbtþ1Þ �BCtðbb�;bbtþ1Þ�

þ 1

h
BC1

ðbb�;bb1Þ þ
h

2

XT
t¼1

kf 0
tðbbtÞk2C�

t
:

Lemma 3 (Lemma 10 in Duchi et al. [26]). Let Gt ¼Pt
i¼1 gig

>
i and Ay denote the pseudo-inverse of A, then

XT
t¼1

hgt; ðG1=2
t Þygti � 2

XT
t¼1

hgt; ðG1=2
T Þygti ¼ 2trðG1=2

T Þ:

Lemma 4 (Derived From Theorem 3.1 and Its Proof in
Ghashami et al. [31]). Let Dt ¼

Pt
i¼1 si. In Algorithms 1

and 2, St is the sketch generated by performing frequent direc-
tions on the input Ct. Then for any t and k < t, C>

t Ct �
S>t St � C>

t Ct � DtId and Dt � kCt � Ck
t k2F=ðt � kÞ, where Ck

t

denotes the minimizer of kCt � Ck
t kF over all rank k matrices.

4.2 Proof of Theorem 1

We first consider 1
h
CT ðbb�Þ in the upper bound of Lemma 1.

We have
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1

h
CT ðbb�Þ ¼ 1

2h
bb�; ðdId þ ðS>T ST Þ1=2Þbb�
D E

� d

2h
kbb�k22 þ

1

2h
bb�; ðC>

TCT Þ1=2bb�
D E

� d

2h
kbb�k22 þ

1

2h
�maxðG1=2

T Þkbb�k22

� d

2h
kbb�k22 þ

1

2h
trðG1=2

T Þkbb�k22;

(17)

where �maxðG1=2
T Þ denotes the largest eigenvalue of G1=2

T .
Before considering h

2

PT
t¼1 kf 0tðbbtÞk2C�

t�1
, we need to derive

the lower bound of Ht�1. Let c ¼ d

kgtk2þ
ffiffiffiffiffiffiffiffi
Dt�1

p . If c < 1, we
have

Ht�1 ¼ dId þ ðS>t�1St�1Þ1=2

� cðkgtk2Id þ
ffiffiffiffiffiffiffiffiffi
Dt�1

p
Id þ ðS>t�1St�1Þ1=2Þ

� cðkgtk2Id þ ðDt�1Id þ S>t�1St�1Þ1=2Þ
� cðkgtk2Id þ ðC>

t�1Ct�1Þ1=2Þ
� cðC>

t�1Ct�1 þ kgtk22IdÞ1=2

� cðC>
t CtÞ1=2;

where the second inequality is due to
ffiffiffiffiffiffiffiffiffi
Dt�1

p þ x 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt�1 þ x2

p
for any x 
 0 and the third inequality is due

to Lemma 4.
In the other case d 
 ffiffiffiffiffiffiffiffiffi

Dt�1

p þ kgtk2, we have

Ht�1 ¼ dId þ ðS>t�1St�1Þ1=2

� kgtk2Id þ
ffiffiffiffiffiffiffiffiffi
Dt�1

p
Id þ ðS>t�1St�1Þ1=2

� kgtk2Id þ ðDt�1Id þ S>t�1St�1Þ1=2

� kgtk2Id þ ðC>
t�1Ct�1Þ1=2

� ðC>
t CtÞ1=2:

Thus, for any d > 0, we have

Ht�1 � min 1;
d

kgtk2 þ
ffiffiffiffiffiffiffiffiffi
Dt�1

p
 !

ðC>
t CtÞ1=2:

Then, we have

XT
t¼1

kf 0
t bbtð Þk2C�

t�1

¼
XT
t¼1

gt; ðHt�1Þ�1gt

D E

�
XT
t¼1

max 1;
kgtk2 þ

ffiffiffiffiffiffiffiffiffi
Dt�1

p

d


 �
gt; ðGy

tÞ1=2gt
D E

� max 1;
maxt�Tkgtk2 þ

ffiffiffiffiffiffi
DT

p

d


 �XT
t¼1

gt; ðGy
tÞ1=2gt

D E

� 2max 1;
maxt�Tkgtk2 þ

ffiffiffiffiffiffi
DT

p

d


 �
trðG1=2

T Þ;

(18)

where the last inequality is due to Lemma 3.
We complete the proof by substituting (17) and (18) into

Lemma 1.

4.3 Proof of Theorem 2

Let St;S
0
t;Vt denote the values of S;S

0;V in the tth round of
Algorithm 2.

For each t ¼ 1; . . . ; T , we have

ðS>t StÞ1=2 � ðS>t�1St�1Þ1=2 þ ffiffiffiffiffi
st

p
VtV

>
t

¼ VtS
0
tV

>
t þ ffiffiffiffiffi

st
p

VtV
>
t � ðS>t�1St�1Þ1=2

� VtStV
>
t � ðS>t�1St�1Þ1=2

¼ ðS>t�1St�1 þ gtg
>
t Þ1=2 � ðS>t�1St�1Þ1=2

� 0:

Let eGt ¼ S>t St. Then, considering the first term in the upper
bound of Lemma 2, we have

BCtþ1
ðbb�;bbtþ1Þ �BCtðbb�;bbtþ1Þ

¼ 1

2
bb� � bbtþ1; ðHtþ1 �HtÞðbb� � bbtþ1Þ
� �

¼ 1

2
bb� � bbtþ1; ðeG1=2

tþ1 � eG1=2

t Þðbb� � bbtþ1Þ
D E

� 1

2
bb� � bbtþ1; ðeG1=2

tþ1 � eG1=2

t Þðbb� � bbtþ1Þ
D E

þ 1

2
bb� � bbtþ1;

ffiffiffiffiffiffiffiffiffi
stþ1

p
Vtþ1V

>
tþ1ðbb� � bbtþ1Þ

� �
� 1

2
kbb� � bbtþ1k22�maxðeG1=2

tþ1 � eG1=2

t þ ffiffiffiffiffiffiffiffiffi
stþ1

p
Vtþ1V

>
tþ1Þ

� 1

2
kbb� � bbtþ1k22trðeG1=2

tþ1 � eG1=2

t þ ffiffiffiffiffiffiffiffiffi
stþ1

p
Vtþ1V

>
tþ1Þ

� 1

2
maxt�Tkbb� � bbtk22 trðeG1=2

tþ1 � eG1=2

t Þ þ t
ffiffiffiffiffiffiffiffiffi
stþ1

p� �
:

Note that bb1 ¼ 0. We further get

XT�1

t¼1

½BCtþ1
ðbb�;bbtþ1Þ �BCtðbb�;bbtþ1Þ� þBC1

ðbb�;bb1Þ

� 1

2
maxt�Tkbb� � bbtk22trðeG1=2

T � eG1=2

1 Þ

þ t
PT

t¼2

ffiffiffiffiffi
st

p
2

maxt�Tkbb� � bbtk22 þ
1

2
bb�;H1bb

�h i

� 1

2
maxt�Tkbb� � bbtk22trðG1=2

T Þ

þ t
PT

t¼1

ffiffiffiffiffi
st

p
2

maxt�Tkbb� � bbtk22 þ
d

2
kbb�k22;

(19)

where we use Lemma 4 in the last inequality.
Before considering

PT
t¼1 kf 0

tðbbtÞk2C�
t
, we need to derive

the lower bound of Ht.
If d <

ffiffiffiffiffi
Dt

p
, we have

Ht ¼ dId þ ðS>t StÞ1=2 �
dð ffiffiffiffiffi

Dt

p
Id þ ðS>t StÞ1=2Þffiffiffiffiffi

Dt

p

� dðDtId þ S>t StÞ1=2ffiffiffiffiffi
Dt

p � dffiffiffiffiffi
Dt

p ðC>
t CtÞ1=2;

where the second inequality is due to
ffiffiffiffiffi
Dt

p þ x 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt þ x2

p
for x 
 0 and the third inequality is due to Lemma 4.
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And in the other case d 
 ffiffiffiffiffi
Dt

p
, we have

Ht ¼ dId þ ðS>t StÞ1=2 �
ffiffiffiffiffi
Dt

p
Id þ ðS>t StÞ1=2

� ðDtId þ S>t StÞ1=2 � ðC>
t CtÞ1=2:

Thus, for any d > 0, we have

Ht � min 1;
dffiffiffiffiffi
Dt

p

 �

ðC>
t CtÞ1=2:

Then, we have

XT
t¼1

kf 0
tðbbtÞk2C�

t
¼
XT
t¼1

gt; ðHtÞ�1gt

D E

�
XT
t¼1

max 1;

ffiffiffiffiffi
Dt

p
d


 �
gt; ðGy

tÞ1=2gt
D E

�max 1;

ffiffiffiffiffiffi
DT

p
d


 �XT
t¼1

gt; ðGy
tÞ1=2gt

D E

�2max 1;

ffiffiffiffiffiffi
DT

p
d


 �
trðG1=2

T Þ

(20)

where the last inequality is due to Lemma 3.
By substituting (19) and (20) into Lemma 2, we complete

the proof.

5 EXPERIMENTS

In this section, we perform numerical experiments on online
regression, online classification, training CNN, and fine-
tuning much deeper CNN to verify the efficiency and effec-
tiveness of our algorithms.

5.1 Baselines and the Default Setup

First, we show that ADA-FD and ADA-FFD approximate
ADA-FULL well, and outperform ADA-DIAG. Second, we
compare our methods with existing approximations of
ADA-FULL including ADA-LR and RADAGRAD. Third,
we compare our methods with FD-SON [30] that is an
approximation of ONS by frequent directions. Fourth, we
compare our algorithms with the classical online gradient
descent (OGD) [44] which updates as bbtþ1 ¼ bbt � hffiffi

t
p gt and

ADAM [45] that is a popular method for training neural net-
works. Note that ADAM have four parameters including
the step size h, a constant d, and two decay rates b1;b2.

In all experiments, by default, we search the step size h

for all algorithms from the set of f1e�4; 1e�3; . . . ; 1g, and
choose the value that achieves the best regret for experi-
ments on online regression or the best training performance
for other experiments. To simplify the parameter settings
and control the computational cost, we simply set t ¼ 20 for
algorithms using matrix approximation by default. More-
over, we set d ¼ 1e�8;b1 ¼ 0:9;b2 ¼ 0:999 for ADAM as rec-
ommended by Kingma and Ba [45], and also set d ¼ 1e�8
for ADA-DIAG. For ADA-FULL, ADA-LR, RADAGRAD,
and FD-SON, we select the parameter d from the set of
f1e�4; 1e�3; . . . ; 10g, and choose the value that achieves the
best regret for experiments on online regression or the best
training performance for other experiments. For our ADA-
FD and ADA-FFD with the default t ¼ 20, we set d ¼ 1
when combining with the composite mirror descent (CMD)

method, and set d ¼ 10 when combining with the primal-
dual subgradient (PDS) method.

In the above way, by default, our ADA-FD and ADA-
FFD only have one varying hyperparameter—the step size
h in different experiments.

5.2 Online Regression

We first consider the problem of online regression where
ftðbbÞ ¼ jbb>xt � ytj and yt ¼ bb>

� xt with ideal synthetic data.
Specifically, we set T ¼ 10; 000, d ¼ 500, and bb� ¼ b̂b�=kb̂b�k2,
where each entry of b̂b� is drawn independently from
Nð0; 1Þ. In order to meet the requirement of the approxi-
mately low-rank structure, each data point xt is sampled
independently from a Gaussian distribution Nðmm;SÞ where
mm ¼ 1 and S has rapidly decaying eigenvalues �jðSÞ ¼
�0j

�a with a ¼ 2 and �0 ¼ 100. For the PDS method, we
compare ADA-FD and ADA-FFD against ADA-FULL and
ADA-DIAG. And for the CMD method, we compare ADA-
FD and ADA-FFD against all baselines. For fairness, all
algorithms are run with the same permutation of the func-
tion sequence. Due to the randomness of ADA-LR and
RADAGRAD, their experiments are run 20 times, and we
report the average regret with standard deviations.

Fig. 1 shows the comparison of regret among different
algorithms with the default t ¼ 20. For both the PDS method
and CMD method, our two algorithms outperform ADA-
DIAG, and are close to ADA-FULL. For the CMD method,
our two algorithms outperform ADA-LR, RADAGRAD, FD-
SON, OGD, and ADAM. Note that according to the default
setup, we need to search the best step size h from the set of
f1e�4; 1e�3; . . . ; 1g for all algorithms. So, it is reasonable to
investigate whether our algorithms and other baselines are
similarly sensitive to the value of h. To this end, we further
present the comparison of the total regret among different
algorithms with different h in Fig. 2. We find that all algo-
rithms are similarly sensitive to the value of h. So, it is fair to
search the best value of h for each algorithm.

Fig. 3 shows the total regret and running time of all algo-
rithms with t ¼ f20; 40; 60; 80g for the CMD method. Note
that the parameter d of our two algorithms with t > 20 is
selected according to the same way used for ADA-FULL.
From this figure, we have the following observations.

� When t is increased from 20 to 80, the total regret of
algorithms using matrix approximation is decreased,
and our ADA-FD and ADA-FFD always outperform
ADA-LR, RADAGRAD, and FD-SON. The running
time of each algorithm using matrix approximation

Fig. 1. The comparison of regret among different algorithms with the
default t ¼ 20 on synthetic data for the PDS method and CMD method.
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increases as t becomes larger. ADA-LR ismuch slower
than all other methods except ADA-FULL. Our ADA-
FD is significantly faster than ADA-FULL and as fast
as RADAGRAD and FD-SON.Moreover, ADA-FFD is
faster thanADA-FD.

� With t ¼ 80, our ADA-FD and ADA-FFD can slightly
outperform ADA-FULL. It is reasonable, because our
ADA-FD and ADA-FFD maintain a strictly low-rank
approximation of gradient outer products, which
could eliminate possible noises in the approximately
low-rank data.

Furthermore, it is obvious that our ADA-FD with t ¼ 501
and ADA-FFD with t ¼ 251 will have the same regret as
ADA-FULL.1 Therefore, larger t might not be better for mini-
mizing the regret, which is clearly verified by Fig. 4. More-
over, from Fig. 4, we notice that the regret of ADA-FFD
suddenly degrades back to that of ADA-FULL when t

changes from 250 to 251. It is reasonable, because the process
of ADA-FFD with t ¼ 251 significantly differs from that of
ADA-FFD with t ¼ 250. For ADA-FFD with t ¼ 251, when t
increases, the rank ofVtMtV

>
t first gradually increases from 1

to 500, and then is always kept at 500. However, with t ¼ 250,
every time the rank of VtMtV

>
t reaches 2t ¼ 500, the if state-

ment in step 12 of Algorithm 4 is triggered. In such cases, the
rank of VtMtV

>
t will be reduced to t � 1 ¼ 249, because t þ

1 ¼ 251 columns of the matrix VtM
1=2
t are zeroed out. So, for

ADA-FFD with t ¼ 250, there exist cyclical changes about the
rank ofVtMtV

>
t : it repeatedly grows from t � 1 to 2t.

Since the regret of ADA-FD is close to that of ADA-FFD,
to facilitate presentations, we only report the results of
ADA-FFD in the following.

5.3 Online Classification

Then, we perform online classification to evaluate the per-
formance of our ADA-FFD with two real world datasets
from LIBSVM repository [46]: Gisette and Epsilon which
are high-dimensional and dense. At each round, the learn-
ing algorithm receives a single example ðxt; ytÞ and suffers
the squared hinge loss ftðbbÞ ¼ max 0; 1� ytbb

>xt
� �� �2

. Each
algorithm ends with a single pass through the training
data. Following Duchi et al. [26], we adopt two metrics to
measure the performance: the online mistakes and the off-
line accuracy on the testing data. For the PDS method, we
compare ADA-FFD against ADA-DIAG. And for the CMD
method, we compare ADA-FFD against ADA-DIAG,

RADAGRAD, FD-SON, OGD, and ADAM. We omit the
results of ADA-FULL and ADA-LR, because they are too
slow. Both datasets are divided into the training part and
testing part, and the numbers of training and testing exam-
ples are shown in Table 1.

For both datasets, we repeat the experiments of all algo-
rithms 20 times with random permutations of training data,
and report the average mistakes and test accuracy with
standard deviations. Figs. 5 and 6 show the comparison of
mistakes and test accuracy among different algorithms. We
find that our ADA-FFD outperforms ADA-DIAG, RADA-
GRAD, FD-SON, OGD, and ADAM in terms of mistakes on
Gisette and test accuracy on both datasets. In terms of mis-
takes on Epsilon, our ADA-FFD outperforms ADA-DIAG,
RADAGRAD, OGD, and ADAM. Fig. 7 shows the compari-
son of running time among different algorithms. Our ADA-
FFD is faster than RADAGRAD and FD-SON when d ¼
5000 and d ¼ 2000. Compared with Fig. 3b, the advantage
of our ADA-FFD in running time is more obvious for the
larger d.

Fig. 2. The comparison of regret among different algorithms with differ-
ent h on synthetic data for the PDS method and CMD method.

Fig. 3. The comparison of regret and running time among different algo-
rithms with different t on synthetic data for the CMD method.

Fig. 4. The detailed comparison between ADA-FD and ADA-FFD with
different t and ADA-FULL on synthetic data for the CMD method.

TABLE 1
Datasets Used in Experiments

Dataset #Examples #Features #Classes

Gisette 6,000/1,000 5,000 2
Epsilon 400,000/100,000 2,000 2
MNIST 60,000/10,000 784 10
CIFAR10 50,000/10,000 3,072 10
CIFAR100 50,000/10,000 3,072 100
SVHN 73,257/26,032 3,072 101. ADA-FFD with t ¼ 251 is equivalent to ADA-FULL for d ¼ 500,

since the if statement at step 12 of Algorithm 4 will never be triggered.
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5.4 Non-Convex Optimization in CNN

Besides convex optimization, ADA-DIAG incorporated into
the CMDmethod has also been applied to non-convex optimi-
zation such as training neural networks and has performed
well. Therefore, we take convolutional neural networks as an
example and compare ADA-FFD against ADA-DIAG, RADA-
GRAD, FD-SON, OGD, and ADAM on training classical neu-
ral networks. We consider a 4-layer CNN from the Keras
examples directory,2 which contains two 3� 3 convolutional
layers and two fully connected layers. The first convolutional
layer generates 32 channels, and the second convolutional
layer generates 64 channels followed by 2� 2 max-pooling
and 0.25 dropout. The first fully connected layer contains 128
hidden units followed by 0.5 dropout, and the second fully
connected layer is a logistic layer. The activation functions of
all layers except the logistic layer are ReLU, and the objective
is the cross-entropy loss. We use this simple and standard
architecture to perform classification on the MNIST [47],
CIFAR10 [48], CIFAR100 [48], and SVHN [49] datasets.

Following Krummenacher et al. [27], we only consider
applying ADA-FFD, RADAGRAD, and FD-SON to the con-
volutional layers, and other layers are still trained with
ADA-DIAG. For all algorithms, we run 20 times with the
batch size 128, and report the average training loss and
test accuracy with standard deviations. Fig. 8 shows the
comparison of training loss and test accuracy during train-
ing among different algorithms. We find that our ADA-
FFD outperforms ADA-DIAG, RADAGRAD, FD-SON,
and OGD on all datasets when applied to training CNN.
Moreover, our ADA-FFD outperforms ADAM on CIFAR
10 and CIFAR100, and is close to ADAM on MNIST and
SVHN. We also note that RADAGRAD is outperformed
by ADA-DIAG when the same running time is used,

which validates that our ADA-FFD has a better ability to
approximate ADA-FULL than RADAGRAD. To make a
clear comparison about the time complexity, Fig. 9 shows
the comparison of running time costed by one epoch of each
algorithm. We find that even if all algorithms run with the
same number of epochs, our ADA-FFD is only a little slower
than ADA-DIAG, OGD, and ADAM.

5.5 Fine-Tuning Much Deeper CNN

We also consider the problem of fine-tuning VGG19 [50] to
adapt for CIFAR10, which contains sixteen convolutional
layers and three fully connected layers. Note that VGG19 is
originally designed for ImageNet [51] with 1,000 classes,
while CIFAR10 only has 10 classes. Therefore, we replace
the three fully connected layers of VGG19 with one fully
connected layer that contains 10 hidden units and adopts
softmax as the activation function. Furthermore, because
32� 32 images in CIFAR10 are invalid inputs for VGG19,
we resize all images in CIFAR10 to 64� 64. Before fine-
tuning the modified VGG19, we initialize its convolu-
tional layers with the weights of VGG19 pre-trained on

Fig. 5. The comparison of mistakes and test accuracy among different algorithms on Gisette for the PDS method and CMD method.

Fig. 6. The comparison of mistakes and test accuracy among different algorithms on Epsilon for the PDS method and CMD method.

Fig. 7. The comparison of running time among different algorithms on
Gisette and Epsilon for the CMD method.2. https://github.com/keras-team/keras/tree/2.1.2/examples
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ImageNet.3 Then, we freeze the weights of all convolu-
tional layers, and only train the top fully connected layer
using the resized CIFAR10.

For all algorithms, we run 20 times with the batch size
128, and report the average training loss and test accuracy

with standard deviations. Fig. 10 shows the comparison of
training loss, test accuracy, and running time of one epoch
among different algorithms on fine-tuning VGG19 for
CIFAR10. In the aspects of training loss and test accuracy,
we find that our ADA-FFD outperforms ADA-DIAG,
RADAGRAD, and OGD, and is slightly better than FD-
SON. Although the training loss of our ADA-FFD is worse
than that of ADAM, the test accuracy of ADA-FFD is better.

Fig. 8. The comparison of training loss and test accuracy among different algorithms on training CNN.

Fig. 9. The comparison of running time costed by one epoch of each algorithm on training CNN.

Fig. 10. The comparison of training loss, test accuracy, and running time of one epoch among different algorithms on fine-tuning VGG19 for CIFAR10.

3. https://github.com/fchollet/deep-learning-models/releases/
download/v0.1/vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5
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Moreover, if all algorithms run with the same number of
epochs, our ADA-FFD is only a little slower than ADA-
DIAG, OGD, and ADAM.

6 CONCLUSION

In this paper, we first present ADA-FD to approximate ADA-
FULL using frequent directions, which reduces the time and
space complexities toOðt2dÞ andOðtdÞ, respectively, and has
the similar efficiency compared to ADA-DIAG. Then, we fur-
ther present ADA-FFD to reduce the average time complexity
to OðtdÞ that is linear in both the dimensionality d and the
sketching size t, which only needs to double the space com-
plexity of ADA-FD for accelerating frequent directions used
in it. Furthermore, according to our theoretical analysis, our
ADA-FD and ADA-FFD enjoy the regret bound close to that
of ADA-FULL when the outer product matrix of gradients is
approximately low-rank. Numerical experiments on different
problems and datasets demonstrate the efficiency and effec-
tiveness of our algorithms.
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