Strongly Adaptive Online Learning over Partial Intervals

Yuanyu WAN ${ }^{1}$, Wei-Wei TU^{2} \& Lijun ZHANG ${ }^{1 *}$
${ }^{1}$ National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;
${ }^{2}$ 4Paradigm Inc., Beijing 100000, China

Appendix A Proof of Lemmas 1 and 3

Because the weighting method used in Algorithm 2 can be reduced to the modified AdaNormalHedgeg shown in Algorithm 1 by keeping all experts active, Theorems 1 and 2 can also be reduced to Lemmas 1 and 3, respectively. Following the proof of Theorems 1 and 2 , for any $i \in[N]$, it is easy to verify that

$$
\begin{equation*}
\sum_{t=q}^{s}\left\langle\ell_{t}, \mathbf{x}_{t}^{I}\right\rangle-\sum_{t=q}^{s} \ell_{t}(i) \leqslant 2 \sqrt{\tilde{c}(|I|)|I|} \tag{A1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{t=q}^{s}\left\langle\boldsymbol{\ell}_{t}, \mathbf{x}_{t}^{I}\right\rangle-\sum_{t=q}^{s} \ell_{t}(i) \leqslant 2 \tilde{c}(|I|)+2 \sqrt{2 \tilde{c}(|I|) \sum_{t=1}^{s} \mathbb{I}_{[t \in I]} \boldsymbol{\ell}_{t}(i)} \tag{A2}
\end{equation*}
$$

where $\tilde{c}(|I|)=3 \ln \frac{N(3+\ln (1+|I|))}{2}$. Because of $\mathbf{x} \in \Delta^{N}$, multiplying both sides of (A1) by $\mathbf{x}(i)$ and summing over N, we have

$$
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x})=\sum_{t=q}^{s}\left\langle\boldsymbol{\ell}_{t}, \mathbf{x}_{t}^{I}\right\rangle-\sum_{t=q}^{s}\left\langle\boldsymbol{\ell}_{t}, \mathbf{x}\right\rangle \leqslant 2 \sqrt{\tilde{c}(|I|)|I|} .
$$

Similarly, multiplying both sides of (A2) by $\mathbf{x}(i)$ and summing over N, we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & =\sum_{t=q}^{s}\left\langle\boldsymbol{\ell}_{t}, \mathbf{x}_{t}^{I}\right\rangle-\sum_{t=q}^{s}\left\langle\boldsymbol{\ell}_{t}, \mathbf{x}\right\rangle \\
& \leqslant 2 \tilde{c}(|I|)+2 \sqrt{2 \tilde{c}(|I|)} \sum_{i=1}^{N} \mathbf{x}(i) \sqrt{\sum_{t=1}^{s} \mathbb{I}_{[t \in I]} \ell_{t}(i)} \\
& \leqslant 2 \tilde{c}(|I|)+2 \sqrt{2 \tilde{c}(|I|)} \sqrt{\sum_{i=1}^{N} \mathbf{x}(i) \sum_{t=1}^{s} \mathbb{I}_{[t \in I]} \ell_{t}(i)} \tag{A3}\\
& \leqslant 2 \tilde{c}(|I|)+2 \sqrt{2 \tilde{c}(|I|) \sum_{t=1}^{s} \mathbb{I}_{[t \in I]} f_{t}(\mathbf{x})}
\end{align*}
$$

where the second inequality is due to Jensens inequality.

Appendix B Proof of Lemmas 2 and 4

The regret bound of SOGD over the interval I has been analyzed by Orabona and Pal [33] for online linear optimization and further refined by Zhang et al. [31] for online convex optimization with smooth loss functions. However, we need to bound the regret over any subinterval $[q, s] \subseteq I$, which requires additional analysis. For the sake of completeness, we include the detailed proof.

For brevity, let $\hat{\mathbf{x}}_{t+1}^{I}=\mathbf{x}_{t}^{I}-\eta_{t}^{I} \nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)$ and assume $I=\left[t_{1}, t_{2}\right]$. Because f_{t} is convex function, for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
f_{t}\left(\mathbf{x}_{t}^{I}\right)-f_{t}(\mathbf{x}) & \leqslant\left\langle\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right), \mathbf{x}_{t}^{I}-\mathbf{x}\right\rangle=\frac{1}{\eta_{t}^{I}}\left\langle\mathbf{x}_{t}-\hat{\mathbf{x}}_{t+1}^{I}, \mathbf{x}_{t}-\mathbf{x}\right\rangle \\
& =\frac{1}{2 \eta_{t}^{I}}\left(\left\|\mathbf{x}_{t}^{I}-\mathbf{x}\right\|_{2}^{2}-\left\|\hat{\mathbf{x}}_{t+1}^{I}-\mathbf{x}\right\|_{2}^{2}+\left\|\mathbf{x}_{t}^{I}-\hat{\mathbf{x}}_{t+1}^{I}\right\|_{2}^{2}\right) \tag{B1}\\
& \leqslant \frac{1}{2 \eta_{t}^{I}}\left(\left\|\mathbf{x}_{t}^{I}-\mathbf{x}\right\|_{2}^{2}-\left\|\mathbf{x}_{t+1}^{I}-\mathbf{x}\right\|_{2}^{2}\right)+\frac{\eta_{t}^{I}}{2}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2} .
\end{align*}
$$

[^0]For any $[q, s] \subseteq I=\left[t_{1}, t_{2}\right]$, summing the inequalities of iterations during $[q, s]$, we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & \leqslant \frac{1}{2 \eta_{q}^{I}}\left\|\mathbf{x}_{q}^{I}-\mathbf{x}\right\|_{2}^{2}+\sum_{t=q+1}^{s}\left(\frac{1}{\eta_{t}^{I}}-\frac{1}{\eta_{t-1}^{I}}\right) \frac{\left\|\mathbf{x}_{t}^{I}-\mathbf{x}\right\|_{2}^{2}}{2}+\frac{1}{2} \sum_{t=q}^{s} \eta_{t}^{I}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2} \\
& \leqslant \frac{D^{2}}{2 \eta_{q}^{I}}+\sum_{t=q+1}^{s}\left(\frac{1}{\eta_{t}^{I}}-\frac{1}{\eta_{t-1}^{I}}\right) \frac{D^{2}}{2}+\frac{1}{2} \sum_{t=1}^{s} \eta_{t}^{I}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2} \tag{B2}\\
& =\frac{D^{2}}{2 \eta_{s}^{I}}+\frac{1}{2} \sum_{t=t_{1}}^{s} \eta_{t}^{I}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}
\end{align*}
$$

where the second inequality is due to Assumption 2. To bound $\sum_{t=t_{1}}^{s} \eta_{t}^{I}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}$, we introduce the following lemma.
Lemma 8. (Lemma 3.5 of Auer et al. [6]) Let a_{1}, \cdots, a_{T} and δ be non-negative real numbers. Then

$$
\begin{equation*}
\sum_{t=1}^{T} \frac{a_{t}}{\sqrt{\delta+\sum_{i=1}^{t} a_{i}}} \leqslant 2\left(\sqrt{\delta+\sum_{t=1}^{T} a_{t}}-\sqrt{\delta}\right) \tag{B3}
\end{equation*}
$$

where $0 / \sqrt{0}=0$.
According to the definition of η_{t}^{I} shown in Algorithm 3 and Lemma 8, we have

$$
\begin{equation*}
\sum_{t=t_{1}}^{s} \eta_{t}^{I}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}=\alpha \sum_{t=t_{1}}^{s} \frac{\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}}{\sqrt{\delta+\sum_{i=t_{1}}^{t}\left\|\nabla f_{i}\left(\mathbf{x}_{i}^{I}\right)\right\|_{2}^{2}}} \leqslant 2 \alpha \sqrt{\delta+\sum_{t=t_{1}}^{s}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}} . \tag{B4}
\end{equation*}
$$

Substituting (B4) and $\alpha=D / \sqrt{2}$ into (B2), we have

$$
\begin{equation*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \leqslant \sqrt{2} D \sqrt{\delta+\sum_{t=t_{1}}^{s}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{I}\right)\right\|_{2}^{2}} \tag{B5}
\end{equation*}
$$

When Assumption 3 is satisfied, we have $\left\|\nabla f_{t}(\mathbf{x})\right\|_{2} \leqslant G$ for any $\mathbf{x} \in \mathcal{X}$ and t. Combining with $s-t_{1}+1 \leqslant|I|$, it is easy to obtain (15) in Lemma 2 from (B5).

To further utilize the smoothness shown in Assumption 4, we introduce the self-bounding property of smooth functions.
Lemma 9. (Lemma 3.1 of Srebro et al. [39]) For an H-smooth and nonnegative function $f: \mathcal{X} \mapsto \mathbb{R}$,

$$
\begin{equation*}
\|\nabla f(\mathbf{x})\|_{2} \leqslant \sqrt{4 H f(\mathbf{x})}, \forall \mathbf{x} \in \mathcal{X} \tag{B6}
\end{equation*}
$$

According to Lemma 9, Assumptions 1 and 4, we have

$$
\begin{equation*}
\left\|\nabla f_{t}(\mathbf{x})\right\|_{2}^{2} \leqslant 4 H f_{t}(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X} \tag{B7}
\end{equation*}
$$

Combining (B5) and (B7), we have

$$
\begin{equation*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \leqslant \sqrt{2} D \sqrt{\delta+4 H \sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} \leqslant \sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} \tag{B8}
\end{equation*}
$$

To replace $\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)$ with $\sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})$, we use the following lemma.
Lemma 10. (Lemma 19 of Shalev-Shwartz [7]) Let $x, b, c \in \mathbb{R}_{+}$. Then,

$$
\begin{equation*}
x-c \leqslant b \sqrt{x} \Rightarrow x-c \leqslant b^{2}+b \sqrt{c} \tag{B9}
\end{equation*}
$$

Note that (B8) holds for any $[q, s] \subseteq I=\left[t_{1}, t_{2}\right]$, which implies

$$
\begin{equation*}
\left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)\right)-\left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})\right) \leqslant \sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} . \tag{B10}
\end{equation*}
$$

Applying Lemma 10 into the above inequality, we have

$$
\begin{align*}
\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=t_{1}}^{s} f_{t}(\mathbf{x}) & \leqslant 8 H D^{2}+\sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})} \tag{B11}\\
& =8 H D^{2}+D \sqrt{2 \delta+8 H \sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})}
\end{align*}
$$

Then, if $\sum_{t=t_{1}}^{q-1} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x}) \geqslant 0$, from the above inequality, it is easy to obtain

$$
\begin{equation*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \leqslant 8 H D^{2}+D \sqrt{2 \delta+8 H \sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})} \tag{B12}
\end{equation*}
$$

In the case $\sum_{t=t_{1}}^{q-1} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})<0$, from (B8), we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & \leqslant \sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} \\
& \leqslant \sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} \tag{B13}
\end{align*}
$$

which implies

$$
\begin{align*}
& \left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)\right)-\left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}(\mathbf{x})\right) \\
& \leqslant \sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)} \tag{B14}
\end{align*}
$$

Applying Lemma 10 again, we have

$$
\begin{align*}
& \quad\left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I}\right)\right)-\left(\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}(\mathbf{x})\right) \\
& \leqslant 8 H D^{2}+\sqrt{8 H D^{2}} \sqrt{\frac{\delta}{4 H}+\sum_{t=t_{1}}^{q-1} f_{t}(\mathbf{x})+\sum_{t=q}^{s} f_{t}(\mathbf{x})} \tag{B15}\\
& = \\
& 8 H D^{2}+D \sqrt{2 \delta+8 H \sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})} .
\end{align*}
$$

Combining (B12) and (B15) and $\sum_{t=t_{1}}^{s} f_{t}(\mathbf{x})=\sum_{t=1}^{s} \mathbb{I}_{[t \in I]} f_{t}(\mathbf{x})$, we complete the proof for (24) in Lemma 4.

Appendix C Proof of Lemma 7

Lemma 7 is derived from the proof of Lemma 2 of Luo and Schapire [41], and we include its proof for completeness. Let $h(s, c)=\frac{\partial \exp \left(s^{2} / c\right)}{\partial s}=\frac{2 s}{c} \exp \left(\frac{s^{2}}{c}\right)$. Taking the derivative of $F(s)$, we have

$$
\begin{equation*}
F^{\prime}(s)=h(s+1, c)+h(s-1, c)-2 h\left(s, c^{\prime}\right) \tag{C1}
\end{equation*}
$$

where $c=3 a, c^{\prime}=3(a-1)$. Then, applying Taylor expansion to $h(s+1, c)$ and $h(s-1, c)$ around s, and $h\left(s, c^{\prime}\right)$ around c, we have

$$
\begin{align*}
F^{\prime}(s) & =\sum_{k=1}^{\infty} \frac{1}{k!} \frac{\partial^{k} h(s, c)}{\partial s^{k}}+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!} \frac{\partial^{k} h(s, c)}{\partial s^{k}}-2 \sum_{k=1}^{\infty} \frac{\left(c^{\prime}-c\right)^{k}}{k!} \frac{\partial^{k} h(s, c)}{\partial c^{k}} \\
& =2 \sum_{k=1}^{\infty}\left(\frac{1}{(2 k)!} \frac{\partial^{2 k} h(s, c)}{\partial s^{2 k}}-\frac{(-3)^{k}}{k!} \frac{\partial^{k} h(s, c)}{\partial c^{k}}\right) \tag{C2}
\end{align*}
$$

To further analyze $F^{\prime}(s)$, we introduce the following two lemmas.
Lemma 11. (Lemma 3 of Luo and Schapire [41]) Let $h(s, c)=\frac{2 s}{c} \exp \left(\frac{s^{2}}{c}\right)$. The partial derivatives of $h(s, c)$ satisfy

$$
\begin{align*}
\frac{\partial^{k} h(s, c)}{\partial c^{k}} & =\exp \left(\frac{s^{2}}{c}\right) \sum_{j=0}^{k}(-1)^{k} \alpha_{k, j} \cdot \frac{s^{2 j+1}}{c^{k+j+1}} \\
\frac{\partial^{2 k} h(s, c)}{\partial s^{2 k}} & =\exp \left(\frac{s^{2}}{c}\right) \sum_{j=0}^{k} \beta_{k, j} \cdot \frac{s^{2 j+1}}{c^{k+j+1}} \tag{C3}
\end{align*}
$$

where $\alpha_{k, j}$ and $\beta_{k, j}$ are recursively defined as

$$
\begin{align*}
& \alpha_{k+1, j}=\alpha_{k, j-1}+(k+j+1) \alpha_{k, j} \\
& \beta_{k+1, j}=4 \beta_{k, j-1}+(8 j+6) \beta_{k, j}+(2 j+3)(2 j+2) \beta_{k, j+1} \tag{C4}
\end{align*}
$$

with initial values $\alpha_{0,0}=\beta_{0,0}=2$.
Lemma 12. (Lemma 4 of Luo and Schapire [41]) Let $\alpha_{k, j}$ and $\beta_{k, j}$ be defined as in (C4). Then $\frac{\beta_{k, j}}{(2 k)!} \leqslant \frac{(d) \alpha^{k} \alpha_{k, j}}{k!}$ holds for all $k \geqslant 0$ and $j \in\{0, \cdots, k\}$ when $d \geqslant 3$.

Substituting (C3) into (C2), we have

$$
\begin{equation*}
F^{\prime}(s)=2 \exp \left(\frac{s^{2}}{c}\right) \sum_{k=1}^{\infty} \sum_{j=0}^{k} \frac{s^{2 j+1}}{c^{k+j+1}}\left(\frac{\beta_{k, j}}{(2 k)!}-\frac{(3)^{k} \alpha_{k, j}}{k!}\right) \tag{C5}
\end{equation*}
$$

Note that $\exp \left(s^{2} / c\right)>0$ and $c=3 a>0$. Then, applying Lemma 12 with $d=3$, we complete the proof.

Appendix D Proof of Corollary 1

Because $\tau_{1} \leqslant|I| \leqslant \tau_{2}$, we have $2^{\left\lceil\log \tau_{1}\right\rceil-1}<\tau_{1} \leqslant|I| \leqslant \tau_{2} \leqslant 2^{\left\lceil\log \tau_{2}\right\rceil}$. Therefore, we can find a $j \in\left\{\left\lceil\log \tau_{1}\right\rceil\right.$, $\left\lceil\log \tau_{1}\right\rceil+$ $\left.1, \cdots,\left\lceil\log \tau_{2}\right\rceil\right\}$ such that $2^{j-1}<|I| \leqslant 2^{j}$.

Then, because of $|I| \leqslant 2^{j}$, there must be an integer $k \geqslant 0$ such that

$$
\begin{equation*}
k \cdot 2^{j}+1 \leqslant q \leqslant s \leqslant(k+2) \cdot 2^{j} \tag{D1}
\end{equation*}
$$

where $\left[k \cdot 2^{j}+1,(k+2) \cdot 2^{j}\right]$ can be divided as two consecutive intervals

$$
\begin{equation*}
I_{1}=\left[k \cdot 2^{j}+1,(k+1) \cdot 2^{j}\right] \text { and } I_{2}=\left[(k+1) \cdot 2^{j}+1,(k+2) \cdot 2^{j}\right] \tag{D2}
\end{equation*}
$$

Due to $j \in\left\{\left\lceil\log \tau_{1}\right\rceil,\left\lceil\log \tau_{1}\right\rceil+1, \cdots,\left\lceil\log \tau_{2}\right\rceil\right\}$, we have $I_{1} \in \mathcal{I}$ and $I_{2} \in \mathcal{I}$. If $[q, s] \subseteq I_{v}, v \in\{1,2\}$, according to (12) in Theorem 1 and (13) in Lemma 1 , for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
& \sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \\
= & \sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{v}}\right)+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{v}}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \tag{D3}\\
\leqslant & 2 \sqrt{3\left|I_{v}\right| \ln \frac{2 \tau_{2}\left(3+\ln \left(1+2 \tau_{2}\right)\right)}{\tau_{1}}}+2 \sqrt{3\left|I_{v}\right| \ln \frac{N\left(3+\ln \left(1+\left|I_{v}\right|\right)\right)}{2}} .
\end{align*}
$$

If $q \in I_{1}$ and $s \in I_{2}$, similarly, due to (12) in Theorem 1 and (13) in Lemma 1 , for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
& \sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \\
= & \sum_{t \in I_{1}: t \geqslant q}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right)+\sum_{t \in I_{2}: t \leqslant s}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right) \\
\leqslant & 2 \sqrt{3\left|I_{1}\right| \ln \frac{2 \tau_{2}\left(3+\ln \left(1+2 \tau_{2}\right)\right)}{\tau_{1}}}+2 \sqrt{3\left|I_{1}\right| \ln \frac{N\left(3+\ln \left(1+\left|I_{1}\right|\right)\right)}{2}} \tag{D4}\\
& +2 \sqrt{3\left|I_{2}\right| \ln \frac{2 \tau_{2}\left(3+\ln \left(1+2 \tau_{2}\right)\right)}{\tau_{1}}}+2 \sqrt{3\left|I_{2}\right| \ln \frac{N\left(3+\ln \left(1+\left|I_{2}\right|\right)\right)}{2}} .
\end{align*}
$$

The proof is completed with $\left|I_{1}\right|=\left|I_{2}\right| \leqslant 2|I|$.

Appendix E Proof of Corollary 2

We complete the proof by replacing (13) used in the proof of Corollary 1 with (15) in Lemma 2.

Appendix F Proof of Corollary 3

It is easy to verify $2^{\lceil\log |I|\rceil-1}<|I| \leqslant 2^{\lceil\log |I|\rceil}$. For brevity, let $j=\lceil\log |I|\rceil, k=\left\lfloor\frac{q-1}{2^{j}}\right\rfloor$ and $q^{\prime}=k \cdot 2^{j}+1$. We have

$$
\begin{equation*}
k \cdot 2^{j}+1 \leqslant q \leqslant(k+1) \cdot 2^{j} \tag{F1}
\end{equation*}
$$

where the first inequality is due to $k \leqslant \frac{q-1}{2^{j}}$ and the second inequality is due to $k+1=\left\lceil\frac{q}{2^{j}}\right\rceil \geqslant \frac{q}{2^{j}}$, which implies $q \in$ $\left[k \cdot 2^{j}+1,(k+1) \cdot 2^{j}\right]$. Combining with $s-q+1=|I| \leqslant 2^{j}$, we further have

$$
\begin{equation*}
k \cdot 2^{j}+1 \leqslant q \leqslant s<(k+2) \cdot 2^{j} \tag{F2}
\end{equation*}
$$

which implies $s \in\left[k \cdot 2^{j}+1,(k+1) \cdot 2^{j}\right]$ or $s \in\left[(k+1) \cdot 2^{j}+1,(k+2) \cdot 2^{j}\right]$. For brevity, let $I_{1}=\left[k \cdot 2^{j}+1,(k+1) \cdot 2^{j}\right]$ and $I_{2}=\left[(k+1) \cdot 2^{j}+1,(k+2) \cdot 2^{j}\right]$. Moreover, because of $|I| \in\left[\tau_{1}, \tau_{2}\right]$, we have

$$
\begin{equation*}
j=\lceil\log |I|\rceil \in\left\{\left\lceil\log \tau_{1}\right\rceil,\left\lceil\log \tau_{1}\right\rceil+1, \cdots,\left\lceil\log \tau_{2}\right\rceil\right\} \tag{F3}
\end{equation*}
$$

which implies that $I_{1} \in \mathcal{I}$ and $I_{2} \in \mathcal{I}$.
For $s \in I_{v}$ where $v \in\{1,2\}$, according to (20) in Lemma 3, for any $\mathbf{x} \in \Delta^{N}$, we have

$$
\begin{align*}
\sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]}\left(f_{t}\left(\mathbf{x}_{t}^{I_{v}}\right)-f_{t}(\mathbf{x})\right) & \leqslant 2 \tilde{c}\left(\left|I_{v}\right|\right)+2 \sqrt{2 \tilde{c}\left(\left|I_{v}\right|\right) \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]} f_{t}(\mathbf{x})} \tag{F4}\\
& \leqslant 4 \tilde{c}\left(\left|I_{v}\right|\right)+\sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]} f_{t}(\mathbf{x}) .
\end{align*}
$$

If $s \in I_{1}$, according to (19) in Theorem 2 and (20) in Lemma 3, for any $\mathbf{x} \in \Delta^{N}$, we have

$$
\begin{align*}
& \sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \\
= & \sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \\
\leqslant & 2 c+2 \sqrt{2 c \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)}+2 \tilde{c}\left(\left|I_{1}\right|\right)+2 \sqrt{2 \tilde{c}\left(\left|I_{1}\right|\right) \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})} \\
\leqslant & 2 c+2 \sqrt{2 c\left(4 \tilde{c}\left(\left|I_{1}\right|\right)+2 \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})\right)}+2 \tilde{c}\left(\left|I_{1}\right|\right)+2 \sqrt{2 \tilde{c}\left(\left|I_{1}\right|\right) \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})} \tag{F5}\\
\leqslant & 2 c+4 \sqrt{2 c \tilde{c}\left(\left|I_{1}\right|\right)}+2 \tilde{c}\left(\left|I_{1}\right|\right)+\left(4 \sqrt{c}+2 \sqrt{2 \tilde{c}\left(\left|I_{1}\right|\right)}\right) \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})} \\
= & \frac{a(I)}{2}+\frac{b(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})}
\end{align*}
$$

where the second inequality is due to (F4) and the last equality is due to $\left|I_{1}\right|=2^{j}$ and the definitions of $a(I)$ and $b(I)$. Similarly, if $s \in I_{2}$, for any $\mathbf{x} \in \Delta^{N}$, we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & =\sum_{t \in I_{1}: t \geqslant q}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right)+\sum_{t \in I_{2}: t \leqslant s}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right) \\
& \leqslant \frac{a(I)}{2}+\frac{b(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}}^{q^{\prime}+2^{j}} f_{t}(\mathbf{x})}+\frac{a(I)}{2}+\frac{b(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}+2^{j}+1}^{s} f_{t}(\mathbf{x})} \tag{F6}\\
& \leqslant a(I)+b(I) \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})}
\end{align*}
$$

where the last inequality is due to Cauchy-Schwarz inequality.

Appendix G Proof of Corollary 4

Let $j=\lceil\log |I|\rceil, k=\left\lfloor\frac{q-1}{2^{j}}\right\rfloor, q^{\prime}=k \cdot 2^{j}+1, I_{1}=\left[k \cdot 2^{j}+1,(k+1) \cdot 2^{j}\right]$ and $I_{2}=\left[(k+1) \cdot 2^{j}+1,(k+2) \cdot 2^{j}\right]$. From the proof of Corollary 3, we have $I_{1}, I_{2} \in \mathcal{I}, q \in I_{1}$ and $s \in I_{1} \cup I_{2}$. For $s \in I_{v}$ where $v \in\{1,2\}$, according to (24) in Lemma 4 , for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
\sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]}\left(f_{t}\left(\mathbf{x}_{t}^{I_{v}}\right)-f_{t}(\mathbf{x})\right) & \leqslant 8 H D^{2}+D \sqrt{2 \delta+8 H \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]} f_{t}(\mathbf{x})} \tag{G1}\\
& \leqslant 10 H D^{2}+D \sqrt{2 \delta}+\sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{v}\right]} f_{t}(\mathbf{x})
\end{align*}
$$

If $s \in I_{1}$, according to (19) in Theorem 2 and (24) in Lemma 4 , for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & =\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)+\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \\
& \leqslant 2 c+2 \sqrt{2 c \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}\left(\mathbf{x}_{t}^{I_{1}}\right)}+8 H D^{2}+D \sqrt{2 \delta+8 H \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})} . \tag{G2}
\end{align*}
$$

Then, combining the above inequality with (G1), we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) \leqslant & 2 c+2 \sqrt{2 c\left(10 H D^{2}+D \sqrt{2 \delta}+2 \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})\right)}+8 H D^{2} \\
& +D \sqrt{2 \delta+8 H \sum_{t=1}^{s} \mathbb{I}_{\left[t \in I_{1}\right]} f_{t}(\mathbf{x})} \\
\leqslant & 2 c+2 \sqrt{2 c\left(10 H D^{2}+D \sqrt{2 \delta}\right)}+8 H D^{2}+D \sqrt{2 \delta} \\
& +\left(4 \sqrt{c}+\sqrt{8 H D^{2}}\right) \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})} \tag{G3}\\
\leqslant & 3 c+28 H D^{2}+3 D \sqrt{2 \delta}+\frac{\tilde{b}(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})} \\
\leqslant & \frac{\tilde{a}(I)}{2}+\frac{\tilde{b}(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})}
\end{align*}
$$

Wan Y Y, et al. Sci China Inf Sci 21
where the last two inequalities are due to the definitions of $\tilde{b}(I)$ and $\tilde{a}(I)$. Similarly, if $s \in I_{2}$, for any $\mathbf{x} \in \mathcal{X}$, we have

$$
\begin{align*}
\sum_{t=q}^{s} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=q}^{s} f_{t}(\mathbf{x}) & =\sum_{t \in I_{1}: t \geqslant q}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right)+\sum_{t \in I_{2}: t \leqslant s}\left(f_{t}\left(\mathbf{x}_{t}\right)-f_{t}(\mathbf{x})\right) \\
& \leqslant \frac{\tilde{a}(I)}{2}+\frac{\tilde{b}(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}}^{q^{\prime}+2^{j}} f_{t}(\mathbf{x})}+\frac{\tilde{a}(I)}{2}+\frac{\tilde{b}(I)}{\sqrt{2}} \sqrt{\sum_{t=q^{\prime}+2^{j}+1}^{s} f_{t}(\mathbf{x})} \tag{G4}\\
& \leqslant \tilde{a}(I)+\tilde{b}(I) \sqrt{\sum_{t=q^{\prime}}^{s} f_{t}(\mathbf{x})}
\end{align*}
$$

where the last inequality is due to Cauchy-Schwarz inequality.

[^0]: * Corresponding author (email: zhanglj@lamda.nju.edu.cn)

