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Abstract. Projection-free algorithms for bandit convex optimization
have received increasing attention, due to the ability to deal with the ban-
dit feedback and complicated constraints simultaneously. The state-of-
the-art ones can achieve an expected regret bound of O(T 3/4). However,
they need to utilize a blocking technique, which is unsatisfying in prac-
tice due to the delayed reaction to the change of functions, and results in
a logarithmically worse high-probability regret bound of O(T 3/4√log T ).
In this paper, we study the special case of bandit convex optimization
over strongly convex sets, and present a projection-free algorithm, which
keeps the O(T 3/4) expected regret bound without employing the block-
ing technique. More importantly, we prove that it can enjoy an O(T 3/4)
high-probability regret bound, which removes the logarithmical factor
in the previous high-probability regret bound. Furthermore, empirical
results on synthetic and real-world datasets have demonstrated the bet-
ter performance of our algorithm.

Keywords: Projection-Free · Bandit Convex Optimization · Strongly
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1 Introduction

Online convex optimization (OCO) plays an important role in many industrial
applications with large-scale and streaming data, such as recommendation sys-
tems [26] and packet routing [3]. Specifically, it can be deemed as a repeated
game between a learner and an adversary [18], in which the learner needs to first
select a decision xt from a convex set K ⊆ R

d at each round t, and then the
adversary chooses a convex loss function ft(·) : K → R. The learner suffers a
loss ft(xt) at each round t, and pursue that the regret defined below

Regret(T ) =
T∑

t=1

ft(xt) − minx∈K
T∑

t=1

ft(x)
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is sublinear in the time horizon T . Over the past decades, various algorithms,
such as online gradient descent (OGD) [36] and follow the regularized leader
(FTRL) [28], have been proposed to achieve the optimal regret bound of O(

√
T ).

However, there exist two common limitations in these algorithms. One is
that they require the full information or the gradient of loss functions, which
is not available in real applications with a black-box model. The other is that
a projection operation is required at each round, which is time-consuming and
even intractable when the constraint set is complicated [23]. To address the first
limitation, there has been a growing research interest in OCO with the bandit
feedback, where only the loss value ft(xt) is available at each round, which
is also known as bandit convex optimization (BCO) [5,6,10,11,20,27]. On the
other hand, to alleviate the second limitation, projection-free algorithms, which
employ efficient operations such as the linear optimization in lieu of projections,
have also attracted ever-increasing attention [9,14–16,19,21,32].

Nonetheless, there are only a few studies that simultaneously tackle the above
two limitations. Specifically, Chen et al. [9] develop the first projection-free algo-
rithm for BCO (PF-BCO), which combines the FTRL algorithm with the one-
point gradient estimator [11] and the Frank-Wolfe (FW) iteration [12,23] for
utilizing the bandit feedback and avoiding the projection, respectively. Unfor-
tunately, this algorithm can only achieve an expected regret bound of O(T 4/5),
which is worse than both the expected O(T 3/4) regret bound attained by exist-
ing algorithms only using the one-point gradient estimator [11] and the O(T 3/4)
regret bound attained by existing algorithms only using the FW iteration [19].
Intuitively, this gap is caused because the variance of the one-point gradient
estimator can increase the approximation error of solving the objective at each
round of FTRL via the FW iteration.

To fill the gap, Garber and Kretzu [15] propose a novel algorithm called block
bandit conditional gradient (BBCG), which enjoys an expected regret bound
of O(T 3/4). The key technique for this improvement is a blocking technique—
dividing total T rounds into size-equal blocks and only updating the decision at
the end of each block, which can reduce the variance of the gradient estimator
such that the approximation error of FW keeps unchanged. Recently, based on
the blocking technique, a bandit and projection-free variant of OGD has also
been developed to achieve the O(T 3/4) expected regret bound [16]. However,
despite the improvement in the regret, the blocking technique could inevitably
sacrifice the performance in practice due to the mismatch between the fixed
action and the changing loss functions over each block. Moreover, we notice that
due to the blocking technique, BBCG can only achieve a high-probability regret
bound of O(T 3/4

√
log T ) [29],1 which is logarithmically worse than the expected

one.
To address these limitations, in this paper, we aim to improve the regret of

PF-BCO without using the blocking technique. Specifically, different from the
blocking technique that indirectly controls the approximation error of FW via

1 Although Wan et al. [29] originally establish such bound for a decentralized variant
of BBCG, it is easy to extend this result for BBCG.
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reducing the variance of the gradient estimator, our main idea is to directly
reduce the approximation error of FW. Note that in the offline setting, Garber
and Hazan [13] have shown that FW can converge faster over strongly convex
sets by utilizing a line search rule to select the step size. Inspired by this result,
we propose an improved variant of PF-BCO by combining it with the line search,
namely BFW-LS. Theoretical analysis demonstrates that our algorithm enjoys
the O(T 3/4) regret bound in both expectation and high probability over strongly
convex sets. Compared with previous improvements on PF-BCO, the blocking
technique is dismissed, and the logarithmical term in the high-probability bound
is removed. Furthermore, empirical results on synthetic and real-world datasets
have verified the effectiveness of our algorithm.

2 Related Work

In this section, we briefly review related work on projection-free OCO algorithms
and bandit convex optimization.

2.1 Projection-Free OCO Algorithms

To handle OCO with complicated constraints, Hazan and Kale [19] propose the
first projection-free algorithm called online Frank-Wolfe (OFW), and achieve a
regret bound of O(T 3/4) for the general case. The essential idea is to replace
the projection operation required by FTRL [28] with an iteration of FW [12].
Specifically, following FTRL, in each round t, OFW first defines an objective
function

Ft(x) = η

t∑

τ=1

〈∇fτ (xτ ),x〉 + ‖x − x1‖22 (1)

with a parameter η. Then, it updates the decision by minimizing Ft(x) via an
iteration of FW, i.e.,

vt = argmin
x∈K

〈∇Ft(xt),x〉

xt+1 = xt + σt(vt − xt)
(2)

where σt ∈ [0, 1] is a step size. Note that only a linear optimization is required
by the update, which can be implemented more efficiently than the projection
over many complicated constraints [18].

Later, plenty of projection-free OCO algorithms have been proposed to estab-
lish tighter regret bounds by leveraging additional assumptions of the constraint
set [14,16,32] and loss functions [17,21,25,32]. The most related one is the vari-
ant of OFW over strongly convex sets [32], which adopts the following line search
rule to select the step size of OFW

σt = argmin
σ∈[0,1]

〈σ (vt − xt) ,∇Ft (xt)〉 + σ2‖vt − xt‖22. (3)
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By exploiting the faster convergence of FW over strongly convex sets [13], Wan
and Zhang [32] establish a regret bound of O(T 2/3), which is better than the
O(T 3/4) regret bound of the original OFW. Although our paper makes a similar
exploitation as them, we want to emphasize that in the bandit setting, more
careful analyses are required to deal with the variance of the gradient estimator.

Additionally, projection-free OCO algorithms have also been extended into
more practical scenarios with decentralized agents [29,30,34], dynamic environ-
ments [16,24,31,33,35], and the bandit setting discussed below.

2.2 Bandit Convex Optimization

The first method for the bandit convex optimization (BCO) is proposed by Flax-
man et al. [11], and attains an expected regret bound of O(T 3/4) for convex loss
function. The significant contribution of this study is to introduce a profound
technique called one-point gradient estimator, which can approximate the gra-
dient with only a single loss value. Based on this technique, subsequent studies
establish several improved bounds for different types of loss functions, such as
the linear function [1,4], the smooth function [27], the strong convex function
[2], and the smooth and strong convex function [20,22].

However, these methods rely on the projection operation or more time-
consuming operations, which is unacceptable for applications with complicated
constraint sets. To address this issue, Chen et al. [9] propose the PF-BCO method
by combining OFW with the one-point gradient estimator, which attains an
expected regret bound of O(T 4/5) for convex loss functions. Later, by employ-
ing the blocking technique, Garber and Kretzu [15] propose a refined variant
of this method, namely BBCG, which reduces the expected regret bound to
O(T 3/4) for the same case. Similarly, Garber and Kretzu [16] propose a ban-
dit and projection-free variant of OGD, namely blocked online gradient descent
with linear optimization oracle (LOO-BBGD), and establish the same expected
regret bound of O(T 3/4). Moreover, besides the expected regret bound, Wan et
al. [29] have shown that BBCG can achieve a high-probability regret bound of
O(T 3/4

√
log T ).

As mentioned before, although the blocking technique is utilized to improve
the expected regret of projection-free BCO, it is unsatisfying in practice due to
the delayed reaction to the change of functions, and results in a logarithmical
term in the high-probability regret bound. In this paper, we focus on the special
case with strongly convex sets, and develop an improved variant of PF-BCO
without using the blocking technique.

3 Main Results

In this section, we first introduce necessary preliminaries including basic defini-
tions, common assumptions, and algorithmic ingredients. Then, we present our
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algorithm and its theoretical guarantees. Due to the limitation of space, we defer
the proof of theoretical results to the supplementary material.2

3.1 Preliminaries

We first recall the standard definition for strongly convex sets [13].

Definition 1. A convex set K ⊆ R
d is called αK-strongly convex with respect

to a norm ‖ · ‖ if for any x,y ∈ K, γ ∈ [0, 1] and z ∈ R
d such that ‖z‖ = 1, it

holds that
γx + (1 − γ)y + γ(1 − γ)

αK

2
‖x − y‖2z ∈ K.

Next, we introduce three common assumptions in BCO [11].

Assumption 1. The convex decision set K is full dimensional and contains the
origin. Moreover, there exist two constants r,R > 0 such that

rBd ⊆ K ⊆ RBd

where Bd denotes the unit Euclidean ball centered at the origin in R
d.

Assumption 2. At each round t, the loss function ft(x) is G-Lipschitz over K,
i.e., for any x,y ∈ K

|ft(x) − ft(y)| ≤ G‖x − y‖2.
Assumption 3. At each round t, each loss function ft(x) is bounded over K,
i.e., for any x ∈ K

|ft(x)| ≤ M. (4)

Moreover, all loss functions are chosen beforehand, i.e., the adversary is oblivi-
ous.

Last, we recall the one-point gradient estimator [11], which is commonly
utilized to deal with the bandit feedback. Specifically, for a function f(x), we
can define its δ-smooth version as

f̂δ(x) = Eu∼Bd [f(x + δu)] (5)

which satisfies the following lemma.

Lemma 1 (Lemma 1 in Flaxman et al. [11]). Let δ > 0, f̂δ(x) defined in
(5) satisfies

∇f̂δ(x) = Eu∼Sd

[
d

δ
f(x + δu)u

]
(6)

where Sd denotes the unit sphere in R
d.

According to this lemma, the one-point gradient estimator is to make an unbiased
estimation of ∇f̂δ(x) as d

δ f(x + δu)u by leveraging the single value f(x + δu).

2 https://github.com/zcx-xxx/PAKDD-2024/blob/main/PAKDD-2024-Zhang-S.
pdf.

https://github.com/zcx-xxx/PAKDD-2024/blob/main/PAKDD-2024-Zhang-S.pdf
https://github.com/zcx-xxx/PAKDD-2024/blob/main/PAKDD-2024-Zhang-S.pdf
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Algorithm 1. Bandit Frank-Wolfe with Line Search
1: Input: K, δ, η
2: Initialization: y1 ∈ Kδ

3: for t = 1, 2, . . . , T do
4: Play xt = yt + δut, where ut ∼ Sd

5: Observe ft(xt) and compute gt according to (7)
6: Construct Ft(y) as in (8).
7: Compute vt = argmin

y∈Kδ

〈∇Ft (yt) ,y〉
8: Compute σt according to (10)
9: yt+1 = yt + σt (vt − yt)

10: end for

3.2 Our Proposed Algorithm

Now, we introduce our improved variant of PF-BCO, which is still a combination
of the OFW algorithm and the one-point gradient estimator. Specifically, we first
define a subset of the convex set K as

Kδ = (1 − δ/r)K = {(1 − δ/r)x | x ∈ K}
where 0 < δ < r is a parameter. Following previous BCO algorithms [8,11,15],
the decision xt at each round t is divided into two parts, i.e.,

xt = yt + δut

where yt is an auxiliary decision learning from historical information and ut is
uniformly sampled from Sd. Note that according to Assumption 1, it is easy to
verify the feasibility of the above xt, i.e., xt ∈ K. Moreover, in this way, the
loss value of ft(xt) = ft(yt + δut) is observed at each round t. According to
the one-point gradient estimator, it can be utilized to generate an approximate
gradient as

gt =
d

δ
ft(yt + δut)ut. (7)

To further combine the OFW algorithm, we need to reconstruct the objective
function in (1) as

Ft(y) = η

t∑

τ=1

〈gτ ,y〉 + ‖y − y1‖22 . (8)

Then, similar to (2) in OFW, we update the auxiliary decision by minimizing
Ft(y) via a FW iteration over Kδ, i.e.,

vt = argmin
y∈Kδ

〈∇Ft (yt) ,y〉

yt+1 = yt + σt (vt − yt) .
(9)

We notice that the above procedures have been utilized in the PF-BCO algorithm
[9]. However, they make use of a decaying step size, i.e., σt = t−2/5, which cannot
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exploit the strong convexity of K to reduce the approximation error of the FW
iteration. By contrast, inspired by (3) utilized in the full information setting [32],
we employ a line search rule to select the step size as

σt = argmin
σ∈[0,1]

〈σ (vt − yt) ,∇Ft (yt)〉 + σ2‖vt − yt‖22 (10)

which is able to make FW converge faster over the strongly convex set [13]. The
detailed procedures of our algorithm are summarized in Algorithm 1, and it is
named as bandit Frank-Wolfe with line search (BFW-LS).

3.3 Theoretical Guarantees

Next, we proceed to present the theoretical guarantees of our BFW-LS over
strongly convex sets. Although in the full information setting, Wan and Zhang
[32] have shown the advantage of the line search over the strongly convex set. It
is worth noting that their result is not applicable in the bandit setting due to
the following two challenges.

– In the full information setting, Wan and Zhang [32] directly utilize the faster
convergence of FW over strongly convex K. However, in the bandit setting,
the FW iteration is performed over the shrunk set Kδ. It is unclear whether
Kδ is also strongly convex.

– In the bandit setting, the objective function in (8) is defined based on the
estimated gradient, the variance of which makes it more difficult for us to
minimize (8) with one FW iteration than the objective function (1) in the
full information setting.

To address the above challenges, we first derive the following lemma, which
implies that Kδ is also strongly convex.

Lemma 2. If K is αK-strongly convex with respect to a norm ‖ · ‖, then Kδ is
αK

1−(δ/r) -strongly convex with respect to the norm ‖ · ‖.
Based on the above lemma, we establish an upper bound for the approximation
error of minimizing the objective function in (8) over strongly convex sets.

Lemma 3. Let K be an αK-strongly convex set with respect to the �2 norm. Let
y∗

t = argminy∈Kδ
Ft−1(y) for any t ∈ [T +1], where Ft(y) is define in (8). Under

Assumptions 1, 2, and 3, for any t ∈ [T + 1], Algorithm 1 with η = cR
dM(T+2)3/4

and δ = cT−1/4 has

Ft−1 (yt) − Ft−1 (y∗
t ) ≤ εt =

C√
t + 2

where c > 0 is a constant such that δ < r and C = max
(
16R2, 4096

3α2
K

)
.
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Remark 1. We find that the approximation error of the FW iteration is upper
bound by O(t−1/2) for our algorithm over strongly convex sets. For a clear com-
parison, we note that this approximation error for PF-BCO over general convex
sets has a worse bound of O(t−2/5) (See the proof of Theorem 1 in Chen et al.
[8]).

By applying Lemma 3, we prove that our method enjoys the following regret
bound over strongly convex sets.

Theorem 1. Let K be an αK-strongly convex set with respect to the �2 norm and
C = max

(
16R2, 4096

3α2
K

)
. Let c > 0 be a constant such that δ = cT−1/4 ≤ r. Under

Assumptions 1, 2, and 3, Algorithm 1 with η = cR
dM(T+2)3/4 and δ = cT−1/4

ensures

E[Regret(T )] ≤4RdM(T + 2)3/4

c
+

RdMT 3/4

c
+ 3cGT 3/4 +

4
√

CG(T + 2)3/4

3

+
cGRT 3/4

r
.

Remark 2. From Theorem 1, our Algorithm 1 achieves an expected regret bound
of O(T 3/4) over strongly convex sets. Note that this bound is the same as the
expected regret bound of BBCG [15] and LOO-BBGD [16]. Although our result
does not hold in general convex case like their results, we dismiss the compro-
mising blocking technique required by them.

Furthermore, although Theorem 1 has provided an expected regret bound,
one may still wonder whether this bound can hold at most of the time. For this
reason, we also establish a high-probability regret bound for Algorithm 1.

Theorem 2. Let K be an αK-strongly convex set with respect to the �2 norm
and C = max

(
16R2, 4096

3α2
K

)
. Let c > 0 be a constant such that δ = cT−1/4 ≤ r

and η = cR
dM(T+2)3/4 . Under Assumption 1, 2, and 3, with probability at least

1 − γ, Algorithm 1 ensures

Regret(T ) ≤2RG

√
2 ln

1
γ

T 1/2 +
2RdM

c

√
2 ln

1
γ

T 3/4 +
4RdM(T + 2)3/4

c

+
RdMT 3/4

c
+

4
√

CG(T + 2)3/4

3
+

cGRT 3/4

r
+ 3cGT 3/4.

Remark 3. Theorem 2 implies that our algorithm also enjoys a high-probability
regret bound of O(T 3/4) over strongly convex sets. It is worth noting that it
removes the logarithmic factor in the O(T 3/4

√
log T ) high-probability regret

bound achieved by BBCG [15,29], which demonstrate a theoretical advantage of
removing the blocking technique.
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4 Experiments

In this section, we present experimental results on synthetic and real-world
data. All experiments are conducted on a Linux machine with 2.3 GHz CPU
and 125 GB RAM.

4.1 Problem Settings

We first consider the problem of online quadratic programming (OQP) with
synthetic data [9], where the total number of iterations is set as T = 40000, and
the dimensionality is set as d = 10. At each iteration t ∈ [T ], the learner first
selects xt ∈ K, and then suffers a quadratic loss

ft(x) =
1
2
x�G�

t Gtx + w�
t x

where each element of Gt ∈ R
d×d and wt ∈ R

d is sampled from the standard
normal distribution. Second, we consider the problem of online binary classifica-
tion (OBC) with a real-world dataset ijcnn1 [7], which consists of 49990 instances
and each instance having 22 features, i.e., d = 22. To make the block size K of
BBCG and LOO-BBGD be an integer, we randomly select T = 40000 instances
from the original dataset. At each round t, the learner receives a single example
et ∈ R

d and chooses a decision xt ∈ K. Then, the true class label yt ∈ {−1, 1}
is revealed, and the learner suffers the hinge loss

ft(xt) = max
{
1 − yte�

t xt, 0
}

.

More specifically, we set K = {x ∈ R
d | ‖x‖p ≤ τ} with p = 1.5, τ = 50 for the

OQP experiment and p = 1.5, τ = 30 for the OBC experiment. One can verify
that this set is strongly convex for any p ∈ (1, 2) [13], and satisfies Assumption
1 with r = τ

d1/p−1/2 and R = τ .

4.2 Experimental Results

We compare our BFW-LS against existing projection-free BCO algorithms
including PF-BCO [9], BBCG [15], and LOO-BBGD [16]. The parameters of
all algorithms are set according to what their corresponding theories suggest.
Specifically, all of them depend on two parameters η and δ, which are set as
η = c1T

−3/4 and δ = c2T
−1/4 for BBCG, LLO-BBGD, and our BFW-LS, and

η = c1T
−4/5, δ = c2T

−1/5 for PF-BCO. The constants c1 and c2 are selected
from {1e − 2, 1e − 1, . . . , 1e3} and {20, 40, . . . , 120, 140}, respectively. Moreover,
BBCG adopts two additional parameters K and ε to control the block size and
the error tolerance in each block, which are set as ε = 16R2T−1/2 and K =

√
T .

The same block size is also utilized in LOO-BBGD. Figure 1a and Fig. 1b show
the average loss of each algorithm, i.e., 1

t

∑t
i=1 fi(xi) at each iteration t, on the

OQP and OBC experiments, respectively. We find that the average loss of our
BFW-LS is lower than that of these baselines. Additionally, although the regret
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Fig. 1. Average Loss of Our and Previous Projection-free BCO Algorithms.

bound of BBCG and LOO-BBGD is better than that of PF-BCO, they fail to
exhibit significantly better performance in comparison to PF-BCO, especially
on the OQP experiment. This phenomenon partially suggests the shortcoming
of the blocking technique.

5 Conclusion

In this paper, we propose a projection-free algorithm called BFW-LS for BCO,
which achieves an O(T 3/4) expected regret bound over strongly convex sets,
without using the blocking technique required by previous projection-free BCO
algorithms with the same expected bound. Furthermore, we also show that our
BFW-LS has a high-probability regret bound of O(T 3/4), which removes the
logarithmic factor in the O(T 3/4

√
log T ) high-probability regret bound achieved

by previous projection-free BCO algorithms. Finally, experimental results verify
the advantage of our BFW-LS.
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