Supplementary Material: Accelerating Adaptive Online Learning by Matrix Approximation

Yuanyu Wan and Lijun Zhang
National Key Laboratory for Novel Software Technology
Nanjing University, Nanjing 210023, China
\{wanyy, zhanglj\}@lamda.nju.edu.cn

A Theoretical Analysis

In this supplementary material, we provide proof of Theorems 1 and 2.

A. 1 Supporting Results

The following results are used throughout our analysis.
Lemma 1. (Proposition 3 of [1]). Let sequence $\left\{\boldsymbol{\beta}_{t}\right\}$ be generated by ADA-RP. We have

$$
\begin{aligned}
R(T) \leq & \frac{1}{\eta} \sum_{t=1}^{T-1}\left[B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)\right]+\frac{1}{\eta} B_{\Psi_{1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{1}\right) \\
& +\frac{\eta}{2} \sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2}
\end{aligned}
$$

Lemma 2. Let $\mathrm{X}_{t}=\sum_{i=1}^{t} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}$ and A^{\dagger} denote the pseudo-inverse of A , then

$$
\sum_{t=1}^{T}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{1 / 2}\right)^{\dagger} \mathbf{x}_{t}\right\rangle \leq 2 \sum_{t=1}^{T}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{T}^{1 / 2}\right)^{\dagger} \mathbf{x}_{t}\right\rangle=2 \operatorname{tr}\left(\mathrm{X}_{T}^{1 / 2}\right)
$$

Lemma 2 can be proved in the same way as Lemma 10 of [1].
Theorem 3. (Theorem 2.3 of [11]). Let $0<\epsilon, \delta<1$ and $\mathrm{S}=\frac{1}{\sqrt{k}} \mathrm{R} \in \mathbb{R}^{k \times n}$ where the entries $\mathrm{R}_{i, j}$ of R are independent standard normal random variables. Then if $k=\Theta\left(\frac{d+\log (1 / \delta)}{\epsilon^{2}}\right)$, then for any fixed $n \times d$ matrix A, with probability $1-\delta$, simultaneously for all $\mathbf{x} \in \mathbb{R}^{d}$,

$$
(1-\epsilon)\|\mathrm{A} \mathbf{x}\|_{2}^{2} \leq\|\mathrm{SA} \mathbf{x}\|_{2}^{2} \leq(1+\epsilon)\|\mathrm{A} \mathbf{x}\|_{2}^{2}
$$

Based on the above theorem, we derive the following corollary.
Corollary 1. Let $0<\epsilon, \delta<1$ and each entry of $\mathbf{r}_{t} \in \mathbb{R}^{\tau}$ is a Gaussian random variable drawn from $\mathcal{N}(0,1 / \sqrt{\tau})$ independently. Then, if $\tau=\Omega\left(\frac{r+\log (T / \delta)}{\epsilon^{2}}\right)$, with probability $1-\delta$, simultaneously for all $t=1, \ldots, T$,

$$
(1-\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} \preceq \mathrm{~S}_{t}^{\top} \mathrm{S}_{t} \preceq(1+\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} .
$$

Theorem 4. (Theorem 10 of [20]). Let R be a Gaussian random matrix of size $p \times n$. Let $\mathrm{C}=\operatorname{diag}\left(c_{1}, \ldots, c_{p}\right)$ and $\mathrm{S}=\operatorname{diag}\left(s_{1}, \ldots, s_{p}\right)$ be $p \times p$ diagonal matrices, where $c_{i} \neq 0$ and $c_{i}^{2}+s_{i}^{2}=1$ for all i. Let $\mathrm{M}=\mathrm{C}^{2}+\frac{1}{n} \mathrm{SRR}^{\top} \mathrm{S}$ and $r=\sum_{i} s_{i}^{2}$.

$$
\begin{aligned}
& \operatorname{Pr}\left(\lambda_{1}(M) \geq 1+t\right) \leq q \cdot \exp \left(-\frac{c n t^{2}}{\max _{i}\left(s_{i}^{2}\right) r}\right) \\
& \operatorname{Pr}\left(\lambda_{p}(M) \leq 1-t\right) \leq q \cdot \exp \left(-\frac{c n t^{2}}{\max _{i}\left(s_{i}^{2}\right) r}\right)
\end{aligned}
$$

where the constant c is at least $1 / 32$, and q is the rank of S.
Based on the above theorem, we derive the following corollary.
Corollary 2. Let $c \geq 1 / 32, \alpha>0$, $\sigma_{t i}^{2}=\lambda_{i}\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)$, $\tilde{r}_{t}=\sum_{i} \frac{\sigma_{t i}^{2}}{\alpha+\sigma_{t i}^{2}}, \tilde{r}_{*}=$ $\max _{k \leq t \leq T} \tilde{r}_{t}$ and $\sigma_{* 1}^{2}=\max _{1 \leq t \leq T} \sigma_{t 1}^{2}$. Let $\mathrm{K}_{t}=\alpha \mathrm{I}_{d}+\mathrm{C}_{t}^{\top} \mathrm{C}_{t}, \tilde{\mathrm{~K}}_{t}=\alpha \mathrm{I}_{d}+\mathrm{S}_{t}^{\top} \mathrm{S}_{t}$, and $\tilde{\mathrm{I}}_{t}=\mathrm{K}_{t}^{-1 / 2} \tilde{\mathrm{~K}}_{t} \mathrm{~K}_{t}^{-1 / 2}$. If $\tau \geq \frac{\tilde{r}_{*} \sigma_{* 1}^{2}}{c \epsilon^{2}\left(\alpha+\sigma_{* 1}^{2}\right)} \log \frac{2 d T}{\delta}$, then with probability at least $1-\delta$, simultaneously for all $t=1, \cdots, T$,

$$
(1-\epsilon) \mathrm{I}_{d} \preceq \tilde{\mathrm{I}}_{t} \preceq(1+\epsilon) \mathrm{I}_{d} .
$$

A. 2 Proof of Theorem 1

Let $\widetilde{\mathrm{X}}_{t}$ denote $\mathrm{S}_{t}^{\top} \mathrm{S}_{t}$. First, we consider bounding the first term in the upper bound of Lemma 1 . With probability $1-\delta$, we have

$$
\begin{aligned}
& B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right) \\
= & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\widetilde{\mathrm{X}}_{t+1}^{1 / 2}-\widetilde{\mathrm{X}}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1+\epsilon} \mathrm{X}_{t+1}^{1 / 2}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& -\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1-\epsilon} \mathrm{X}_{t}^{1 / 2}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}-\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& +\frac{\epsilon}{4}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}+\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2}\left\|\left(\mathrm{X}_{t+1}^{1 / 2}-\mathrm{X}_{t}^{1 / 2}\right)\right\| \\
& +\frac{\epsilon}{4}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}+\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{t+1}^{1 / 2}-\mathrm{X}_{t}^{1 / 2}\right) \\
& +\frac{\epsilon}{4}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}+\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle
\end{aligned}
$$

where the first inequality is due to Corollary 1.
Thus, we can get

$$
\begin{align*}
& \sum_{t=1}^{T-1}\left[B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)\right] \\
\leq & \frac{1}{2} \sum_{t=1}^{T-1}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{t+1}^{1 / 2}-\mathrm{X}_{t}^{1 / 2}\right) \\
& +\frac{\epsilon}{4} \sum_{t=1}^{T-1}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}+\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \tag{3}\\
\leq & \frac{1}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{T}^{1 / 2}\right)-\frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right) \\
& +\frac{\epsilon}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \sum_{t=1}^{T}\left\|\mathrm{X}_{t}^{1 / 2}\right\|-\frac{\epsilon}{4}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right) .
\end{align*}
$$

Note that $\boldsymbol{\beta}_{1}=\mathbf{0}$, then

$$
\begin{align*}
B_{\Psi_{1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{1}\right) & =\frac{1}{2}\left\langle\boldsymbol{\beta}^{*},\left(\sigma \mathrm{I}_{d}+\widetilde{\mathrm{X}}_{1}^{1 / 2}\right) \boldsymbol{\beta}^{*}\right\rangle \\
& \leq \frac{1}{2} \sigma\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}+\frac{2+\epsilon}{4}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right) \tag{4}
\end{align*}
$$

where the inequality is due to Corollary 1.
Then, we consider the upper bound of $\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2}$. With probability $1-\delta$, we have

$$
\begin{aligned}
& \frac{1}{2}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2}=\left\langle\mathbf{g}_{t},\left(\sigma \mathrm{I}_{d}+\widetilde{\mathrm{X}}_{t}^{1 / 2}\right)^{-1} \mathbf{g}_{t}\right\rangle \\
\leq & \frac{1}{\sqrt{1-\epsilon}}\left\langle\mathbf{g}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle=\frac{l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2}}{\sqrt{1-\epsilon}}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{x}_{t}\right\rangle
\end{aligned}
$$

where the inequality is due to Corollary 1. According to Lemma 2, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2} & \leq \sum_{t=1}^{T} \frac{2 l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2}}{\sqrt{1-\epsilon}}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{x}_{t}\right\rangle \\
& \leq \max _{t \leq T} l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2} \frac{2}{\sqrt{1-\epsilon}} \sum_{t=1}^{T}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{x}_{t}\right\rangle \tag{5}\\
& \leq \frac{4}{\sqrt{1-\epsilon}} \max _{t \leq T} l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2} \operatorname{tr}\left(\mathrm{X}_{T}^{1 / 2}\right)
\end{align*}
$$

We complete the proof by substituting (3), (4), and (5) into Lemma 1.

A. 3 Proof of Theorem 2

Inspired by the proof of Theorem 1, we can derive Theorem 2 by respectively bounding each term in the upper bound of Lemma 1. Before that, we need to derive the lower and upper bounds of $\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}$ based on Corollary 2.

Let the SVD of C_{t}^{\top} be $\mathrm{C}_{t}^{\top}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ where $\mathrm{U} \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times d}, \mathrm{~V} \in \mathbb{R}^{t \times d}$. According to Corollary 2 , with probability at least $1-\delta$, simultaneously for all $t=1, \ldots, T$,

$$
\begin{aligned}
\mathrm{S}_{t}^{\top} \mathrm{S}_{t} & =\tilde{\mathrm{K}}_{t}-\alpha \mathrm{I}_{d}=\mathrm{K}_{t}^{1 / 2} \tilde{\mathrm{I}}_{t} \mathrm{~K}_{t}^{1 / 2}-\alpha \mathrm{I}_{d} \\
& \preceq(1+\epsilon) \mathrm{K}_{t}-\alpha \mathrm{I}_{d}=(1+\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t}+\epsilon \alpha \mathrm{I}_{d} \\
& =\mathrm{U}\left((1+\epsilon) \Sigma \Sigma+\epsilon \alpha \mathrm{I}_{d}\right) \mathrm{U}^{\top}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{S}_{t}^{\top} \mathrm{S}_{t}+\epsilon \alpha \mathrm{I}_{d} & =\tilde{\mathrm{K}}_{t}-\alpha \mathrm{I}_{d}+\epsilon \alpha \mathrm{I}_{d} \\
& =\mathrm{K}_{t}^{1 / 2} \tilde{\mathrm{I}}_{t} \mathrm{~K}_{t}^{1 / 2}-\alpha \mathrm{I}_{d}+\epsilon \alpha \mathrm{I}_{d} \\
& \succeq(1-\epsilon) \mathrm{K}_{t}-\alpha \mathrm{I}_{d}+\epsilon \alpha \mathrm{I}_{d} \\
& =(1-\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} .
\end{aligned}
$$

Then simultaneously for all $t=1, \ldots, T$, we have

$$
\begin{equation*}
\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} \preceq \sqrt{1+\epsilon} \mathrm{U}(\Sigma \Sigma)^{1 / 2} \mathrm{U}^{\top}+\sqrt{\epsilon \alpha} \mathrm{UI}_{d} \mathrm{U}^{\top}=\sqrt{1+\epsilon} \mathrm{X}_{t}^{1 / 2}+\sqrt{\epsilon \alpha} \mathrm{I}_{d} \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} & =\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}+\sqrt{\epsilon \alpha} \mathrm{I}_{d}-\sqrt{\epsilon \alpha} \mathrm{I}_{d} \\
& \succeq\left(\left(\mathrm{~S}_{t}^{\top} \mathrm{S}_{t}\right)+\epsilon \alpha \mathrm{I}_{d}\right)^{1 / 2}-\sqrt{\epsilon \alpha} \mathrm{I}_{d} \tag{7}\\
& \succeq \sqrt{1-\epsilon} \mathrm{X}_{t}^{1 / 2}-\sqrt{\epsilon \alpha} \mathrm{I}_{d} .
\end{align*}
$$

Then we consider bounding the first term in the upper bound of Lemma 1 . Let $\widetilde{\mathrm{X}}_{t}$ denote $\mathrm{S}_{t}^{\top} \mathrm{S}_{t}$. Simultaneously for all $t=1, \ldots, T$, we have

$$
\begin{aligned}
& B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right) \\
= & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\widetilde{\mathrm{X}}_{t+1}^{1 / 2}-\widetilde{\mathrm{X}}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1+\epsilon} \mathrm{X}_{t+1}^{1 / 2}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& \left.-\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1-\epsilon} \mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& +\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, 2 \sqrt{\epsilon \alpha} \mathrm{I}_{d}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
= & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1+\epsilon} \mathrm{X}_{t+1}^{1 / 2}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& \left.-\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{1-\epsilon} \mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& +\sqrt{\epsilon \alpha}\left\|\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\|_{2}^{2} \\
\leq & \frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{t+1}^{1 / 2}-\mathrm{X}_{t}^{1 / 2}\right) \\
& +\frac{\epsilon}{4}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{X}_{t+1}^{1 / 2}+\mathrm{X}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& +\sqrt{\epsilon \alpha}\left\|\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\|_{2}^{2}
\end{aligned}
$$

where the first inequality is due to $(6),(7)$ and the last inequality has been proved in the proof of Theorem 1.

Thus, we can get

$$
\begin{align*}
& \sum_{t=1}^{T-1}\left[B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)\right] \\
\leq & \frac{1}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{T}^{1 / 2}\right)-\frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right) \\
& +\frac{\epsilon}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \sum_{t=1}^{T}\left\|\mathrm{X}_{t}^{1 / 2}\right\| \tag{8}\\
& -\frac{\epsilon}{4}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{1}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right) \\
& +\sqrt{\epsilon \alpha}(T-1) \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2}
\end{align*}
$$

Note that $\boldsymbol{\beta}_{1}=\mathbf{0}$, then

$$
\begin{align*}
B_{\Psi_{1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{1}\right) & =\frac{1}{2}\left\langle\boldsymbol{\beta}^{*},\left(\sigma \mathrm{I}_{d}+\widetilde{\mathrm{X}}_{1}^{1 / 2}\right) \boldsymbol{\beta}^{*}\right\rangle \\
& \leq \frac{1}{2} \sigma\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}+\frac{2+\epsilon}{4}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{X}_{1}^{1 / 2}\right)+\frac{1}{2} \sqrt{\epsilon \alpha}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2} \tag{9}
\end{align*}
$$

Before considering the upper bound of $\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2}$, we need to derive the upper bound of H_{t}^{-1}.

Let the SVD of S_{t}^{\top} be $\mathrm{S}_{t}^{\top}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ where $\mathrm{U} \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times d}, \mathrm{~V} \in \mathbb{R}^{t \times d}$. We also have, for all $t=1, \ldots, T$,

$$
\begin{aligned}
\mathrm{H}_{t} & =\sigma \mathrm{I}_{d}+\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}=\mathrm{U}\left(\sigma \mathrm{I}_{d}+(\Sigma \Sigma)^{1 / 2}\right) \mathrm{U}^{\top} \\
& \succeq \mathrm{U}\left(\alpha \mathrm{I}_{d}+(\Sigma \Sigma)\right)^{1 / 2} \mathrm{U}^{\top}=\left(\alpha \mathrm{I}_{d}+\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}
\end{aligned}
$$

due to $\sigma \geq \sqrt{\alpha} \geq \sqrt{\lambda_{i}\left(\mathrm{~S}_{t}^{\top} \mathrm{S}_{t}\right)+\alpha}-\sqrt{\lambda_{i}\left(\mathrm{~S}_{t}^{\top} \mathrm{S}_{t}\right)}$ for all $i=1, \cdots, d$.
Then according to Corollary 2 , with probability at least $1-\delta$, simultaneously for all $t=1, \ldots, T$,

$$
\begin{aligned}
\mathrm{H}_{t}^{-1} & \preceq\left(\left(\alpha \mathrm{I}_{d}+\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}\right)^{-1}=\left(\left(\mathrm{K}_{t}^{1 / 2} \tilde{\mathrm{I}}_{t} \mathrm{~K}_{t}^{1 / 2}\right)^{-1}\right)^{1 / 2} \\
& \preceq \frac{1}{\sqrt{1-\epsilon}}\left(\mathrm{K}_{t}^{-1}\right)^{1 / 2}=\frac{1}{\sqrt{1-\epsilon}}\left(\left(\alpha \mathrm{I}_{d}+\mathrm{X}_{t}\right)^{-1}\right)^{1 / 2}
\end{aligned}
$$

Thus, we can get

$$
\begin{aligned}
\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2} & =2\left\langle\mathbf{g}_{t}, \mathrm{H}_{t}^{-1} \mathbf{g}_{t}\right\rangle \leq \frac{2}{\sqrt{1-\epsilon}}\left\langle\mathbf{g}_{t},\left(\left(\alpha \mathrm{I}_{d}+\mathrm{X}_{t}\right)^{-1}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle \\
& =\frac{2 l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2}}{\sqrt{1-\epsilon}}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{x}_{t}\right\rangle
\end{aligned}
$$

According to Lemma 2, we have

$$
\begin{align*}
\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2} & \leq \frac{2}{\sqrt{1-\epsilon}} \max _{t \leq T} l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2} \sum_{t=1}^{T}\left\langle\mathbf{x}_{t},\left(\mathrm{X}_{t}^{\dagger}\right)^{1 / 2} \mathbf{x}_{t}\right\rangle \tag{10}\\
& \leq \frac{4}{\sqrt{1-\epsilon}} \max _{t \leq T} l^{\prime}\left(\boldsymbol{\beta}_{t}^{\top} \mathbf{x}_{t}\right)^{2} \operatorname{tr}\left(\mathrm{X}_{T}^{1 / 2}\right)
\end{align*}
$$

We complete the proof by substituting (8), (9), and (10) into Lemma 1.

A. 4 Proof of Corollary 1

Let $\mathrm{C}_{t}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ be the singular value decomposition of C_{t}. Notice that $\mathrm{U} \in$ $\mathbb{R}^{t \times r}, \Sigma \mathrm{~V}^{\top} \in \mathbb{R}^{r \times d}$. According to Theorem 3, we have if $\tau=\Theta\left(\frac{r+\log (1 / \delta)}{\epsilon^{2}}\right)$, then simultaneously $\forall \mathbf{x} \in \mathbb{R}^{r}$, with probability $1-\delta$,

$$
(1-\epsilon)\|\mathrm{U} \mathbf{x}\|_{2}^{2} \leq\left\|\mathrm{R}_{\mathrm{t}} \mathrm{U} \mathbf{x}\right\|_{2}^{2} \leq(1+\epsilon)\|\mathrm{U} \mathbf{x}\|_{2}^{2}
$$

Let $\mathbf{y} \in \mathbb{R}^{d}$ be arbitrary vector, then $\mathrm{C}_{t} \mathbf{y}=\mathrm{U} \Sigma \mathrm{V}^{\top} \mathbf{y}=\mathrm{Ux}$ where $\mathbf{x}=\Sigma \mathrm{V}^{\top} \mathbf{y} \in$ \mathbb{R}^{r}.
Then we have

$$
\mathbf{y}^{\top} \mathrm{S}_{t}^{\top} \mathrm{S}_{t} \mathbf{y}=\mathbf{y}^{\top} \mathrm{C}_{t}^{\top} \mathrm{R}_{t}^{\top} \mathrm{R}_{t} \mathrm{C}_{t} \mathbf{y}=\left\|\mathrm{R}_{\mathrm{t}} \mathrm{U} \mathbf{x}\right\|_{2}^{2} \leq(1+\epsilon)\|\mathrm{U} \mathbf{x}\|_{2}^{2}=(1+\epsilon) \mathbf{y}^{\top} \mathrm{C}_{t}^{\top} \mathrm{C}_{t} \mathbf{y}
$$

and

$$
\mathbf{y}^{\top} \mathrm{S}_{t}^{\top} \mathrm{S}_{t} \mathbf{y}=\mathbf{y}^{\top} \mathrm{C}_{t}^{\top} \mathrm{R}_{t}^{\top} \mathrm{R}_{t} \mathrm{C}_{t} \mathbf{y}=\left\|\mathrm{R}_{\mathrm{t}} \mathrm{U} \mathbf{x}\right\|_{2}^{2} \geq(1-\epsilon)\|\mathrm{Ux}\|_{2}^{2}=(1-\epsilon) \mathbf{y}^{\top} \mathrm{C}_{t}^{\top} \mathrm{C}_{t} \mathbf{y}
$$

Then, we have $(1-\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} \preceq \mathrm{~S}_{t}^{\top} \mathrm{S}_{t} \preceq(1+\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t}$ with probability $1-\delta$, provided $\tau=\Omega\left(\frac{r+\log (1 / \delta)}{\epsilon^{2}}\right)$. Using the union bound, we have if $\tau=\Omega\left(\frac{r+\log (T / \delta)}{\epsilon^{2}}\right)$, with probability $1-\delta$, simultaneously for all $t=1, \ldots, T$,

$$
(1-\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} \preceq \mathrm{~S}_{t}^{\top} \mathrm{S}_{t} \preceq(1+\epsilon) \mathrm{C}_{t}^{\top} \mathrm{C}_{t} .
$$

A. 5 Proof of Corollary 2

Let the SVD of C_{t}^{\top} be $\mathrm{C}_{t}^{\top}=\mathrm{U} \Sigma \mathrm{V}^{\top}$ where $\mathrm{U} \in \mathbb{R}^{d \times d}, \Sigma \in \mathbb{R}^{d \times d}, \mathrm{~V} \in \mathbb{R}^{t \times d}$. Then we have $\mathrm{K}_{t}=\mathrm{U}\left(\alpha \mathrm{I}_{d}+\Sigma \Sigma^{\top}\right) \mathrm{U}^{\top}$ and

$$
\begin{aligned}
\tilde{\mathrm{I}}_{t} & =\mathrm{K}_{t}^{-1 / 2} \tilde{\mathrm{~K}}_{t} \mathrm{~K}_{t}^{-1 / 2}=\mathrm{K}_{t}^{-1 / 2}\left(\alpha \mathrm{I}_{d}+\mathrm{C}_{t}^{\top} \mathrm{R}_{t}^{\top} \mathrm{R}_{t} \mathrm{C}_{t}\right) \mathrm{K}_{t}^{-1 / 2} \\
& =\mathrm{U}\left(\alpha \mathrm{I}_{d}\left(\alpha \mathrm{I}_{d}+\Sigma \Sigma\right)^{-1}+\left(\alpha \mathrm{I}_{p}+\Sigma \Sigma\right)^{-1 / 2} \Sigma \mathrm{~V}^{\top} \mathrm{R}_{t}^{\top} \mathrm{R}_{t} \mathrm{~V} \Sigma\left(\alpha \mathrm{I}_{d}+\Sigma \Sigma^{\top}\right)^{-1 / 2}\right) \mathrm{U}^{\top} \\
& =\mathrm{U}\left(\alpha \mathrm{I}_{d}\left(\alpha \mathrm{I}_{d}+\Sigma \Sigma\right)^{-1}+\left(\alpha \mathrm{I}_{p}+\Sigma \Sigma\right)^{-1 / 2} \Sigma \mathrm{RR}^{\top} \Sigma\left(\alpha \mathrm{I}_{d}+\Sigma \Sigma^{\top}\right)^{-1 / 2}\right) \mathrm{U}^{\top}
\end{aligned}
$$

where $\mathrm{R}=\mathrm{V}^{\top} \mathrm{R}_{t}^{\top} \in \mathbb{R}^{d \times \tau}$ is a Gaussian random matrix due to that V is an orthogonal matrix and R_{t}^{\top} is a Gaussian random matrix.

Let $c_{i}^{2}=\frac{\alpha}{\alpha+\sigma_{t i}^{2}}$ and $s_{i}^{2}=\frac{\sigma_{t i}^{2}}{\alpha+\sigma_{t i}^{2}}$. Then according to Theorem 4, with probability at least $1-\delta$,

$$
(1-\epsilon) \mathbf{I}_{d} \preceq \tilde{\mathrm{I}}_{t} \preceq(1+\epsilon) \mathrm{I}_{d}
$$

provided $\tau \geq \frac{\tilde{t}^{2} \sigma_{11}^{2}}{c \epsilon^{2}\left(\alpha+\sigma_{11}^{2}\right)} \log \frac{2 d}{\delta}$ where the constant c is at least $1 / 32$. Using the union bound, we complete the proof.

