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A B S T R A C T

In this paper, we investigate regularized online exponentially concave (abbr. exp-concave) optimization, in
which each loss function consists of a time-varying exp-concave function and a fixed convex regularization. If
the whole loss function is exp-concave, a classical method called online Newton step (ONS) enjoys an 𝑂(𝑑 log 𝑇 )
regret bound, where 𝑑 is the dimensionality and 𝑇 is the time horizon. However, in the regularized setting,
the sum of an exp-concave function and a convex regularization is not necessarily an exp-concave function,
which implies that ONS is not applicable. To address this problem, we propose the proximal online Newton
step (ProxONS), and show that it can attain the same 𝑂(𝑑 log 𝑇 ) regret bound for any convex regularization.
The main idea is to first perform an iteration of ONS with the exp-concave part in each loss function
and then perform a proximal mapping with the regularization part. Furthermore, we demonstrate that by
utilizing the standard online-to-batch conversion, our ProxONS can be extended to solve stochastic optimization
with a regularized exp-concave objective, and enjoy an 𝑂(𝑑 log 𝑇 ∕𝑇 ) convergence rate with high probability.
Experimental results on two real datasets verify the effectiveness of our ProxONS.
1. Introduction

Regularized online optimization [1–3] is a general learning frame-
work that can find many applications in machine learning, such as
𝓁1-norm regularized logistic regression, support vector machine, and
least squares [4–6]. Specifically, it is formulated as a game between
an online algorithm and an adversary, which is iteratively performed
in 𝑇 consecutive rounds. In each round 𝑡 ∈ [𝑇 ], the online algorithm
is required to select a decision 𝐱𝑡 from a convex set  ⊆ R𝑑 , and then
suffers a loss of the form

𝐹𝑡(𝐱) = 𝑓𝑡(𝐱) + 𝑟(𝐱), (1)

where 𝑓𝑡(⋅) ∶  ↦ R is a convex function selected by the adversary
and 𝑟(⋅) ∶  ↦ R is a convex regularization function. The performance
of the online algorithm is commonly measured by the gap between the
cumulative loss of its decisions and the optimal fixed decision, i.e.,

𝑅𝑇 =
𝑇
∑

𝑡=1
𝐹𝑡(𝐱𝑡) − min

𝐱∈

𝑇
∑

𝑡=1
𝐹𝑡(𝐱), (2)

which is referred to as the regret.
In the literature, there exist plenty of methods [7–18] that can

minimize the regret for specific types of loss function 𝐹𝑡(𝐱) by simply
utilizing the gradient of 𝐹𝑡(𝐱) and ignoring the composite structure
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shown in (1). For example, online gradient descent (OGD) [7] attains
𝑂(

√

𝑇 ) and 𝑂(log 𝑇 ) regret bounds for convex and strongly convex 𝐹𝑡(𝐱)
respectively, and online Newton step (ONS) [8] attains an 𝑂(𝑑 log 𝑇 )
regret bound for exp-concave 𝐹𝑡(𝐱). Moreover, these regret bounds are
known to be minimax optimal [19,20]. However, ignoring the com-
posite structure in (1) can result in undesirable effects. For example,
a major reason for using the 𝓁1-norm regularization 𝑟(𝐱) = ‖𝐱‖1 is to
promote the sparsity of decisions [21], but directly applying OGD on
the loss function 𝐹𝑡(𝐱) actually cannot promote the sparse decisions.

To address the above problem, previous studies [1–3] have pro-
posed improved methods that update the decision by utilizing the
gradient of 𝑓𝑡(𝐱) and exploiting the regularization 𝑟(𝐱) in an explicit way
such as implementing a proximal mapping with 𝑟(𝐱). In this way, these
methods not only have the ability to minimize the regret for a specific
type of loss function 𝐹𝑡(𝐱), but also can benefit from the presence of
the regularization function 𝑟(𝐱). However, they can only utilize the
convexity and strong convexity of the loss function 𝐹𝑡(𝐱) to recover the
𝑂(

√

𝑇 ) and 𝑂(log 𝑇 ) regret bounds obtained by OGD. It is still an open
problem whether the exponential concavity (abbr. exp-concavity) of the
loss function 𝐹𝑡(𝐱) can be utilized to recover the 𝑂(𝑑 log 𝑇 ) regret bound
obtained by ONS without ignoring the presence of the regularization
vailable online 22 May 2024
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function 𝑟(𝐱). It is worth noting that the exp-concavity is a weaker
property than the strong convexity [22].

In this paper, instead of focusing on exp-concave 𝐹𝑡(𝐱), we consider
a more general scenario, in which only the time-varying function 𝑓𝑡(𝐱)
is exp-concave, and the regularization 𝑟(𝐱) can be any convex function.
As proved by Yang et al. [23], the sum of an exp-concave function and a
convex regularization is not necessarily an exp-concave function, which
implies that ONS actually is not applicable in this general scenario even
ignoring the composite structure in (1). To answer the above open
problem and address the limitation of ONS, we propose a proximal
variant of ONS, namely ProxONS, by combining it with the standard
proximal mapping technique [1]. Specifically, in each round of our
ProxONS, the main idea is to first perform an iteration of ONS with
the exp-concave function 𝑓𝑡(𝐱) and then perform a proximal mapping
with the regularization function 𝑟(𝐱). Our theoretical analysis reveals
that ProxONS can attain the 𝑂(𝑑 log 𝑇 ) regret bound for any convex
regularization function 𝑟(𝐱), which is more general than ONS.

Furthermore, we demonstrate that by utilizing the standard online-
to-batch conversion [24], our ProxONS can be extended to solve
stochastic optimization with a regularized exp-concave objective, and
enjoy an 𝑂(𝑑 log 𝑇 ∕𝑇 ) convergence rate with high probability. Notice
that when the whole objective is exp-concave, Mahdavi et al. [25]
have proved that the combination of ONS with the standard online-
to-batch conversion can enjoy the 𝑂(𝑑 log 𝑇 ∕𝑇 ) convergence rate with
high probability. By comparison, our theoretical result for stochastic
optimization actually generalizes that of Mahdavi et al. [25] to the case
with any additional regularization. Finally, we conduct experiments on
two real datasets to verify the effectiveness of our ProxONS.

Organization. The remainder of this paper is organized as follows.
In Section 2, we review several relevant regularized online optimization
methods, and their applications to regularized stochastic optimization.
In Section 3, we introduce the procedures of our ProxONS and its
stochastic extension, and provide corresponding theoretical guarantees.
We present the proofs for our theoretical results in Section 4. In Sec-
tion 5, we validate the effectiveness of the proposed algorithms through
experiments. In Section 6, we summarize our proposed algorithms and
discuss potential future work.

Notation. We use lowercase italic letters to represent scalars, such
as the regularization parameter 𝜆, and lowercase bold letters to repre-
sent vectors, such as the decision vector 𝐱. Matrices are in uppercase
bold letters, such as 𝑄 for a positive definite matrix, 𝐼𝑑 for the identity
matrix of 𝑑 × 𝑑. Let ‖𝐱‖𝑄 =

√

𝐱⊤𝑄𝐱 denote the norm of a vector 𝐱
nduced by the matrix 𝑄. Let ∇𝑓 (𝐱) denote the gradient of 𝑓 (𝐱) at
he point 𝐱 and argmin𝐱∈ 𝑓 (𝐱) denote a minimizer of 𝑓 (𝐱) over the

convex set . Let prox𝑄𝑟 (𝐱) denote the proximal mapping of 𝑟(𝐱) on a
point 𝐱 ∈ R𝑑 with respect to a positive definite matrix 𝑄 ∈ R𝑑×𝑑 . We
use E𝜉∼𝑃 [𝑓 (𝐱; 𝜉)] to denote the expectation of 𝑓 (𝐱; 𝜉) where 𝜉 denotes
a random variable drawn from the distribution 𝑃 . We summarize the
notations used in our paper in Table 1.

2. Related work

In this section, we briefly review related work on regularized online
optimization, and discuss their applications to regularized stochastic
optimization.

2.1. Regularized online optimization

Forward backward splitting (FOBOS) [1] is the first method for min-
imizing the regret of regularized online optimization, while explicitly
exploiting the regularization structure.1 In each round, it updates as

1 The abbreviation of this method follows the original paper of Duchi and
inger [1], though there does not exist the second ‘O’ in its full name.
2

t

Table 1
Notations used in this paper.

Notation Meaning

𝜆 Scalar
𝐱 Vector
𝑄 Positive definite matrix
𝐼𝑑 Identity matrix of 𝑑 × 𝑑
‖𝐱‖𝑄 Vector norm induced by the matrix 𝑄
∇𝑓 (𝐱) Gradient of 𝑓 (𝐱) at the point 𝐱
argmin𝐱∈ 𝑓 (𝐱) Minimizer of 𝑓 (𝐱) over the convex set 
prox𝑄𝑟 (𝐱) Proximal mapping of 𝑟(𝐱) with respect to the matrix 𝑄
E𝜉∼𝑃 [𝑓 (𝐱; 𝜉)] Expectation of 𝑓 (𝐱; 𝜉)

follows
𝐱′𝑡 = 𝐱𝑡 − 𝜂𝑡∇𝑓𝑡(𝐱𝑡)

𝑡+1 = argmin
𝐱∈

{1
2
‖

‖

𝐱 − 𝐱′𝑡‖‖
2
2 + 𝜂𝑡𝑟(𝐱)

}

,
(3)

here 𝜂𝑡 is a learning rate. The first step of FOBOS is a gradient
escent step with respect to the function 𝑓𝑡(𝐱), which is commonly
tilized to minimize the regret. The second step of FOBOS introduces
regularization function 𝑟(𝐱), which can be rewritten to

𝑡+1 = prox
𝜂−1𝑡 𝐼𝑑
𝑟 (𝐱′𝑡 ), (4)

here

prox𝑄𝑟 (𝐱) = argmin
𝐲∈

{

𝑟(𝐲) + 1
2
‖𝐲 − 𝐱‖2𝑄

}

(5)

denotes the proximal mapping of 𝑟(⋅) on a point 𝐱 ∈ R𝑑 with respect to a
positive definite matrix 𝑄 ∈ R𝑑×𝑑 . This step is critical for exploiting the
regularization structure. Moreover, as proved by Duchi and Singer [1],
FOBOS attains 𝑂(

√

𝑇 ) and 𝑂(log 𝑇 ) regret bounds for convex and
trongly convex 𝐹𝑡(𝐱) respectively. Later, Duchi et al. [3] propose a
eneralized version of FOBOS, namely composite mirror descent, by
eplacing the Euclidean distance 1

2
‖

‖

𝐱 − 𝐱′𝑡‖‖
2
2 in (3) with the Bregman

ivergence.
Besides, Xiao [2] proposes regularized dual averaging (RDA), which

s an online extension of the primal–dual subgradient method [26] and
pdates as follows

𝑡+1 = argmin
𝐱∈

{

⟨𝐠̄𝑡, 𝐱⟩ + 𝑟(𝐱) + 1
𝑡𝜂𝑡

ℎ(𝐱)
}

, (6)

where 𝐠̄𝑡 = 1
𝑡
∑𝑡

𝑖=1 ∇𝑓𝑖(𝐱𝑖) denotes the average gradient and ℎ(𝐱) is
strongly convex auxiliary function. As discussed by Xiao [2], RDA

an also achieve the 𝑂(
√

𝑇 ) and 𝑂(log 𝑇 ) regret bounds for convex and
strongly convex 𝐹𝑡(𝐱) respectively, and is able to generate significantly

ore sparse decisions than FOBOS by using 𝑟(𝐱) = 𝜆‖𝐱‖1 for some 𝜆 > 0.
e notice that by setting ℎ(𝐱) = 1

2‖𝐱‖
2
2, the update of RDA in (6) can

be rewritten to the following proximal mapping

𝐱𝑡+1 = prox(𝑡𝜂𝑡)
−1𝐼𝑑

𝑟
(

−𝑡𝜂𝑡𝐠̄𝑡
)

. (7)

ne limitation of the above methods is that they cannot utilize the exp-
oncavity of loss functions, which is a property weaker than strong
onvexity [22]. It is well-known that if the composite structure in
1) can be ignored, there exists a classical online Newton step (ONS)
ethod for exp-concave functions [8], which updates as follows

𝑡+1 = 𝐱𝑡 −
1
𝛽
𝐴−1
𝑡 ∇𝐹𝑡(𝐱𝑡)

𝑡+1 = argmin
𝐱∈

1
2
‖𝐱 − 𝐲𝑡+1‖2𝐴𝑡

(8)

in each round, where 𝐴𝑡 =
∑𝑡

𝑖=1 ∇𝐹𝑖(𝐱𝑖)∇𝐹𝑖(𝐱𝑖)⊤ + 𝜖𝐼𝑑 approximates
he second order information of loss functions, 𝜖 > 0 is a parameter
uch that 𝐴𝑡 is positive definite, and 𝛽 is a parameter for adjusting the
earning rate. It can achieve a regret bound of 𝑂(𝑑 log 𝑇 ) by utilizing
he exp-concavity of 𝐹 (𝐱). However, it remains unclear whether the
𝑡
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exp-concavity of 𝐹𝑡(𝐱) can be exploited without ignoring the composite
tructure. This paper provides an affirmative answer by proposing
roxONS, which attains the 𝑂(𝑑 log 𝑇 ) regret bound for exp-concave

𝑓𝑡(𝐱) with any convex regularization function 𝑟(𝐱).

2.2. Regularized stochastic optimization

One significant application of methods for regularized online opti-
mization is to solve stochastic optimization with a regularized objec-
tive, which can be formulated as

min
𝐱∈

𝐹 (𝐱) ≡ E𝜉∼𝑃 [𝑓 (𝐱; 𝜉)] + 𝑟(𝐱), (9)

where 𝑃 is an underlying distribution and 𝑓 (𝐱; 𝜉) ∶ R𝑑 ↦ R is a loss
function depending on 𝜉. If independent and identically distributed
(i.i.d.) samples 𝜉1,… , 𝜉𝑇 ∼ 𝑃 are given, there exists a standard online-
to-batch conversion [24], which can extend online methods to this
stochastic setting. To be precise, it runs the online methods with the
loss function 𝐹𝑡(𝐱) = 𝑓𝑡(𝐱) + 𝑟(𝐱) where 𝑓𝑡(𝐱) = 𝑓 (𝐱; 𝜉𝑡), and utilize the
average decision

𝐱̄𝑇 = 1
𝑇

𝑇
∑

𝑡=1
𝐱𝑡 (10)

as the solution of stochastic optimization. By applying the online-to-
batch conversion to an online method with a regret bound of 𝑅𝑇 , one
can simply achieve the following convergence rate

E𝜉1 ,…,𝜉𝑇

[

𝐹 (𝐱̄𝑇 ) − 𝐹 (𝐱∗)
]

= 𝑂
(

𝑅𝑇 ∕𝑇
)

, (11)

where 𝐱∗ ∈ argmin𝐱∈ 𝐹 (𝐱). However, this rate only holds in expecta-
tion, which cannot make precise the fluctuations of the convergence.
To address this problem, previous studies not only combine the online-
to-batch conversion with FOBOS [1] and RDA [2], but also establish a
high-probability convergence rate of 𝑂(1∕

√

𝑇 ) for convex objective and
high-probability convergence rate of 𝑂(log 𝑇 ∕𝑇 ) for strongly convex

bjective. Inspired by these studies, in this paper, we similarly extend
ur ProxONS to the problem of regularized stochastic optimization and
chieve a high-probability convergence rate of 𝑂(𝑑 log 𝑇 ∕𝑇 ) for exp-
oncave 𝑓 (𝐱; 𝜉) and any convex 𝑟(𝐱). We notice that Mahdavi et al. [25]
ave extended ONS to achieve a high-probability convergence rate of
(𝑑 log 𝑇 ∕𝑇 ) in the special case with exp-concave 𝑓 (𝐱; 𝜉) and 𝑟(𝐱) = 0.

Our result can be regarded as a significant generalization of that in
Mahdavi et al. [25].

3. Main results

In this section, we first present our ProxONS for regularized online
exp-concave optimization. Then, we introduce its theoretical guarantee
on the regret bound and its application in stochastic optimization.

3.1. ProxONS

Our method is a proximal variant of ONS. In the beginning, since
𝑟(𝐱) is the only available information, we set

𝐱1 = argmin
𝐱∈

𝑟(𝐱). (12)

Then, in each round 𝑡, similar to ONS, our method exploits the exp-
concavity of 𝑓𝑡(𝐱) by utilizing

𝐴𝑡 =
𝑡

∑

𝑖=1
∇𝑓𝑖(𝐱𝑖)∇𝑓𝑖(𝐱𝑖)⊤ + 𝜖𝐼𝑑 (13)

with 𝜖 > 0 to approximate the second order information of 𝑓𝑡(𝐱). Subse-
quently, we use the negative direction of the product of the inverse of
matrix 𝐴𝑡 and the gradient vector ∇𝑓𝑡(𝐱𝑡) to make the following update

−1
3

𝐲𝑡+1 = 𝐱𝑡 − (𝛽𝐴𝑡) ∇𝑓𝑡(𝐱𝑡), (14)
Algorithm 1 Proximal Online Newton Step
1: Input: parameters 𝛽 and 𝜖
2: 𝐱1 = argmin𝐱∈ 𝑟(𝐱), 𝐴0 = 𝜖𝐼𝑑
3: for 𝑡 = 1, 2,… , 𝑇 do
4: 𝐴𝑡 = 𝐴𝑡−1 + ∇𝑓𝑡(𝐱𝑡)∇𝑓𝑡(𝐱𝑡)⊤
5: 𝐲𝑡+1 = 𝐱𝑡 − (𝛽𝐴𝑡)−1∇𝑓𝑡(𝐱𝑡)
6: 𝐱𝑡+1 = argmin𝐱∈

{

1
2
‖

‖

𝐱 − 𝐲𝑡+1‖‖
2
𝛽𝐴𝑡

+ 𝑟(𝐱)
}

7: end for

where the parameter 𝛽 is also inherited from ONS. This step en-
sures that the optimization process moves in the direction of decreas-
ing values of the objective function. Moreover, the matrix 𝐴𝑡 can be
ncrementally updated by setting 𝐴0 = 𝜖𝐼𝑑 and computing

𝑡 = 𝐴𝑡−1 + ∇𝑓𝑡(𝐱𝑡)∇𝑓𝑡(𝐱𝑡)⊤ (15)

n each round 𝑡.
Furthermore, to explicitly exploiting the regularization 𝑟(𝐱), inspired

y (3) and (7), we compute the decision 𝐱𝑡+1 by using the following
roximal mapping of 𝑟(𝐱) on the point 𝐲𝑡+1 with respect to 𝛽𝐴𝑡, i.e,

𝑡+1 =prox𝛽𝐴𝑡
𝑟 (𝐲𝑡+1) = argmin

𝐱∈

{1
2
‖

‖

𝐱 − 𝐲𝑡+1‖‖
2
𝛽𝐴𝑡

+ 𝑟(𝐱)
}

. (16)

he detailed procedures of our method are summarized in Algorithm
, which is named as proximal online Newton step (ProxONS).

emark 1. First, our ProxONS can reduce to the original ONS when
(𝐱) = 0. Second, although our proximal mapping in (16) is inspired
y (3) and (7), the positive definite matrix utilized in our ProxONS
s 𝛽𝐴𝑡, which is carefully designed according to the ONS step in (14)
nd significantly differs from that utilized in (3) and (7). Third, we
otice that the proximal mapping in (16) may not have a closed-form
olution. In that case, we can use existing proximal methods for offline
ptimization such as the proximal gradient descent method [27] to
teratively find a solution.

.2. Regret bound

Following Hazan et al. [8], we first introduce some necessary as-
umptions.

ssumption 1. All functions 𝑓1(⋅),… , 𝑓𝑇 (⋅) are 𝛼-exp-concave over ,
.e., exp(−𝛼𝑓𝑡(⋅)) is concave over  for any 𝑡 ∈ [𝑇 ].

ssumption 2. All gradients of 𝑓1(⋅),… , 𝑓𝑇 (⋅) are bounded by 𝐺, i.e., it
olds that

∇𝑓𝑡(𝐱)‖2 ≤ 𝐺 (17)

or any 𝐱 ∈  and 𝑡 ∈ [𝑇 ].

ssumption 3. The diameter of the decision set  is bounded by 𝐷,
.e., it holds that

𝐱 − 𝐲‖2 ≤ 𝐷 (18)

or any 𝐱, 𝐲 ∈ .

Then, we present the regret bound of ProxONS in the following
heorem.

heorem 1. Under Assumptions 1, 2 and 3, for any 𝐱 ∈ , Algorithm 1
ith 𝛽 = 1

2 min
{

1
4𝐺𝐷 , 𝛼

}

and 𝜖 = 1
𝛽2𝐷2 ensures

𝑇
∑

𝑡=1
𝐹𝑡(𝐱𝑡) −

𝑇
∑

𝑡=1
𝐹𝑡(𝐱) ≤

1
2𝛽

+ 𝑑
2𝛽

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

. (19)
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Remark 2. Theorem 1 implies that for any convex regularization 𝑟(𝐱),
our ProxONS has the capability to exploit the exp-concavity of 𝑓𝑡(𝐱) to
chieve a regret bound of 𝑂(𝑑 log 𝑇 ), which matches the regret bound

of ONS in the special case with 𝑟(𝐱) = 0. Moreover, in terms of 𝑇 , our
regret bound is better than the 𝑂(

√

𝑇 ) regret bound for convex loss
unctions achieved by existing methods such as FOBOS and RDA.

.3. Application to stochastic optimization

Furthermore, we extend our ProxONS to solve stochastic optimiza-
ion with a regularized objective, which has been formulated in (9).
pecifically, we assume that i.i.d. samples 𝜉1,… , 𝜉𝑇 ∼ 𝑃 are given.
ccording to the standard online-to-batch conversion [24], we first
enerate decisions 𝐱1,… , 𝐱𝑇 by running our ProxONS with 𝑓𝑡(𝐱) =
(𝐱; 𝜉𝑡), and then utilize the average decision

̄𝑇 = 1
𝑇

𝑇
∑

𝑡=1
𝐱𝑡 (20)

as the solution.
In this case, we introduce the following two assumptions on each

individual function 𝑓 (𝐱; 𝜉), which are analogue to Assumptions 1 and
2 required in the online setting.

Assumption 4. For any 𝜉 ∈ 𝑃 , the function 𝑓 (𝐱; 𝜉) is 𝛼-exp-concave
over , i.e., exp(−𝛼𝑓 (𝐱; 𝜉)) is concave over .

Assumption 5. For any 𝜉 ∈ 𝑃 , all gradients of the function 𝑓 (𝐱; 𝜉) are
bounded by 𝐺, i.e., it holds that

‖∇𝑓 (𝐱; 𝜉)‖2 ≤ 𝐺 (21)

for any 𝐱 ∈ .

Under Assumptions 3, 4, and 5, we establish the following theoret-
ical guarantee on the solution 𝐱̄𝑇 .

Theorem 2. Let 𝐱∗ = argmin𝐱∈ 𝐹 (𝐱) and 𝛽 = 1
2 min

{

1
4𝐺𝐷 , 𝛼

}

. Under

ssumptions 3, 4, and 5, by applying Algorithm 1 with 𝛽 = 𝛽
3 and 𝜖 = 1

𝛽2𝐷2

to functions {𝑓𝑡(𝐱) = 𝑓 (𝐱; 𝜉𝑡)}𝑇𝑡=1, with a probability at least 1 − 2𝛿, the
average decision 𝐱̄ of Algorithm 1 ensures

𝐹 (𝐱̄𝑇 ) − 𝐹 (𝐱∗) ≤ 1
6𝛽𝑇

+ 3
2𝛽𝑇

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

+
𝐶𝑇 ,1

𝑇
+

𝛽𝐶𝑇 ,2

3𝑇
, (22)

here 𝐶𝑇 ,1 =
24
𝛽
log

√

2𝑇+1
𝛿 +2𝐺𝐷

√

log 2𝑇+1
𝛿2

and 𝐶𝑇 ,2 = 8𝐺2𝐷2 log
√

2𝑇+1
𝛿

+ 𝐺2𝐷2
√

log 2𝑇+1
𝛿2

.

emark 3. From Theorem 2, the combination of our ProxONS with
he standard online-to-batch conversion can achieve a high-probability
onvergence rate of 𝑂(𝑑 log 𝑇 ∕𝑇 ) for stochastic optimization with a
egularized exp-concave objective. This rate matches the convergence
ate of Mahdavi et al. [25], which is also derived by exploiting the exp-
oncavity of 𝑓𝑡(𝐱), but limits to the special case with 𝑟(𝐱) = 0. Moreover,
n terms of 𝑇 , our rate is faster than the 𝑂(1∕

√

𝑇 ) rate achieved by only
tilizing the convexity of the objective.

. Theoretical analysis

In this section, we first introduce some lemmas to support our
nalysis, and then prove Theorems 1 and 2.

.1. Supporting results

The following results are used throughout our analysis.
4

Lemma 1. For any 𝐱 ∈ , Algorithm 1 ensures

∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱) + ∇𝑟(𝐱𝑡+1)⊤(𝐱𝑡+1 − 𝐱)
𝛽
2
‖𝐱𝑡 − 𝐱‖2𝐴𝑡

−
𝛽
2
‖𝐱𝑡+1 − 𝐱‖2𝐴𝑡

+ 1
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡
.

(23)

roof. Let 𝐲𝑡+1 = 𝐱𝑡 − (𝛽𝐴𝑡)−1∇𝑓𝑡(𝐱𝑡). Notice that

𝑡+1 = argmin
𝐱∈

{1
2
‖

‖

𝐱 − 𝐲𝑡+1‖‖
2
𝛽𝐴𝑡

+ 𝑟(𝐱)
}

. (24)

According to the first order optimality condition [28], we have

⟨𝐱 − 𝐱𝑡+1, 𝛽𝐴𝑡(𝐱𝑡+1 − 𝐱𝑡) + ∇𝑓𝑡(𝐱𝑡) + ∇𝑟(𝐱𝑡+1)⟩ ≥ 0. (25)

hen, we have
𝛽
2
‖𝐱𝑡 − 𝐱‖2𝐴𝑡

−
𝛽
2
‖𝐱𝑡+1 − 𝐱‖2𝐴𝑡

𝛽
2
𝐱⊤𝑡 𝐴𝑡𝐱𝑡 −

𝛽
2
𝐱⊤𝑡+1𝐴𝑡𝐱𝑡+1 + ⟨𝛽𝐴𝑡(𝐱𝑡+1 − 𝐱𝑡), 𝐱⟩

𝛽
2
𝐱⊤𝑡 𝐴𝑡𝐱𝑡 −

𝛽
2
𝐱⊤𝑡+1𝐴𝑡𝐱𝑡+1 + ⟨𝛽𝐴𝑡(𝐱𝑡+1 − 𝐱𝑡), 𝐱𝑡+1⟩

− ⟨𝐱 − 𝐱𝑡+1,∇𝑓𝑡(𝐱𝑡) + ∇𝑟(𝐱𝑡+1)⟩
𝛽
2
‖𝐱𝑡 − 𝐱𝑡+1‖2𝐴𝑡

+ ⟨∇𝑓𝑡(𝐱𝑡), 𝐱𝑡 − 𝐱 + 𝐱𝑡+1 − 𝐱𝑡⟩

+ ⟨∇𝑟(𝐱𝑡+1), 𝐱𝑡+1 − 𝐱⟩
⟨∇𝑓𝑡(𝐱𝑡), 𝐱𝑡 − 𝐱⟩ + ⟨∇𝑟(𝐱𝑡+1), 𝐱𝑡+1 − 𝐱⟩

+ min
𝐱∈R𝑑

{

𝛽
2
‖𝐱‖2𝐴𝑡

+ ⟨∇𝑓𝑡(𝐱𝑡), 𝐱⟩
}

⟨∇𝑓𝑡(𝐱𝑡), 𝐱𝑡 − 𝐱⟩ + ⟨∇𝑟(𝐱𝑡+1), 𝐱𝑡+1 − 𝐱⟩ − 1
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡
,

(26)

here the first inequality is due to (25).
By rearranging terms in the above inequality, we complete the

roof.

emma 2 (Lemma 3 of Hazan et al. [8]). If a function 𝑓 (𝐱) ∶  ↦ R is
-exp-concave, ‖∇𝑓 (𝐱)‖2 ≤ 𝐺 for any 𝐱 ∈ , and Assumption 3 holds, we
ave

(𝐱) ≥𝑓 (𝐲) + ∇𝑓 (𝐲)⊤(𝐱 − 𝐲) + 𝛽
2
(𝐱 − 𝐲)⊤∇𝑓 (𝐲)∇𝑓 (𝐲)⊤(𝐱 − 𝐲) (27)

or 𝛽 ≤ 1
2 min

{

1
4𝐺𝐷 , 𝛼

}

and any 𝐱, 𝐲 ∈ .

Lemma 3 (Lemma 11 of Hazan et al. [8]). Let 𝐮1,… ,𝐮𝑇 ∈ R𝑑 be a
sequence of vector such that ‖𝐮𝑖‖2 ≤ 𝑐 for any 𝑖 ∈ [𝑇 ] and some 𝑐 > 0.
Define

𝑉𝑡 =
𝑡

∑

𝜏=1
𝐮𝜏𝐮⊤𝜏 + 𝜖𝐼𝑑 , (28)

where 𝜖 > 0 is some constant. Then, we have
𝑇
∑

𝑡=1
𝐮⊤𝑡 𝑉

−1
𝑡 𝐮𝑡 ≤ 𝑑 ln

(

𝑐2𝑇
𝜖

+ 1
)

. (29)

emma 4 (Lemma 4 of Mahdavi et al. [25]). Let 𝑓𝑡(𝐱) = 𝑓 (𝐱; 𝜉𝑡),
(𝐱) = E𝜉∼𝑃 [𝑓 (𝐱; 𝜉)]. Under Assumptions 3 and 5, with a probability at
east 1 − 𝛿, for all 𝑇 > 0, any 𝐱∗ ∈ , and any 𝛽 > 0, we have

𝑇
∑

𝑡=1
⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), (𝐱𝑡 − 𝐱∗)⟩

𝛽
12

𝑇
∑

𝑡=1

(

|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|
2 + E𝑡−1

[

|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|
2]) + 𝐶𝑇 ,1,

(30)

here 𝐶 = 24 log
√

2𝑇+1 + 2𝐺𝐷
√

log 2𝑇+1 .
𝑇 ,1 𝛽 𝛿 𝛿2
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𝑐
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=

≤

≤

l
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w
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=
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≤

C

≤

≤

=

S
h

≤

Lemma 5 (Lemma 5 of Mahdavi et al. [25]). Let 𝑓𝑡(𝐱) = 𝑓 (𝐱; 𝜉𝑡). Under
Assumptions 3 and 5, with a probability at least 1 − 𝛿, for all 𝑇 > 0 and
any 𝐱∗ ∈ , we have

3
𝑇
∑

𝑡=1
|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|

2 − 5
𝑇
∑

𝑡=1
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2]

≤4

(

8𝐺2𝐷2 log

√

2𝑇 + 1
𝛿

+ 𝐺2𝐷2
√

log 2𝑇 + 1
𝛿2

)

.

(31)

4.2. Proof of Theorem 1

Let 𝛽 = 1
2 min

{

1
4𝐺𝐷 , 𝛼

}

. For any 𝑡 ∈ [𝑇 ], define

𝑡 =∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱) − 𝛽
2
(𝐱 − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)∇𝑓𝑡(𝐱𝑡)⊤(𝐱 − 𝐱𝑡). (32)

Since 𝑓𝑡(𝐱) is exp-concave and 𝑟(𝐱) is convex, we have

𝑓𝑡(𝐱𝑡) + 𝑟(𝐱𝑡+1) − 𝑓𝑡(𝐱) − 𝑟(𝐱)
≤𝑐𝑡 + 𝑟(𝐱𝑡+1) − 𝑟(𝐱)
≤𝑐𝑡 + ∇𝑟(𝐱𝑡+1)⊤(𝐱𝑡+1 − 𝐱),

(33)

where the first inequality is due to Lemma 2 and the definition of 𝑐𝑡,
the second inequality is due to the convexity of 𝑟(𝐱).

Combining (33) with Lemma 1, we have

𝑓𝑡(𝐱𝑡) + 𝑟(𝐱𝑡+1) − 𝑓𝑡(𝐱) − 𝑟(𝐱)

≤ 𝛽
2
‖𝐱𝑡 − 𝐱‖2𝐴𝑡

−
𝛽
2
‖𝐱𝑡+1 − 𝐱‖2𝐴𝑡

+ 1
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡

−
𝛽
2
|(𝐱 − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|

2.

(34)

Since ‖𝐱𝑡 − 𝐱‖𝐴𝑡
=
√

(𝐱𝑡 − 𝐱)⊤𝐴𝑡(𝐱𝑡 − 𝐱), we have

𝑇
∑

𝑡=1

𝛽
2
‖𝐱𝑡 − 𝐱‖2𝐴𝑡

−
𝑇
∑

𝑡=1

𝛽
2
‖𝐱𝑡+1 − 𝐱‖2𝐴𝑡

=
𝛽
2
‖𝐱1 − 𝐱‖2𝐴1

+
𝑇
∑

𝑡=2

𝛽
2
(𝐱𝑡 − 𝐱)⊤𝐴𝑡(𝐱𝑡 − 𝐱)

−
𝑇−1
∑

𝑡=1

𝛽
2
(𝐱𝑡+1 − 𝐱)⊤𝐴𝑡(𝐱𝑡+1 − 𝐱) − 𝛽

2
‖𝐱𝑇+1 − 𝐱‖2𝐴𝑇

𝛽
2
‖𝐱1 − 𝐱‖2𝐴1

−
𝛽
2
‖𝐱𝑇+1 − 𝐱‖2𝐴𝑇

+
𝑇
∑

𝑡=2

𝛽
2
(𝐱𝑡 − 𝐱)⊤(𝐴𝑡 − 𝐴𝑡−1)(𝐱𝑡 − 𝐱).

(35)

Then, combining (34) and (35), we have
𝑇
∑

𝑡=1

(

𝑓𝑡(𝐱𝑡) + 𝑟(𝐱𝑡+1)
)

−
𝑇
∑

𝑡=1

(

𝑓𝑡(𝐱) + 𝑟(𝐱)
)

≤ 𝛽
2
‖𝐱1 − 𝐱‖2𝐴1

−
𝛽
2
‖𝐱𝑇+1 − 𝐱‖2𝐴𝑇

+
𝑇
∑

𝑡=2

𝛽
2
(𝐱𝑡 − 𝐱)⊤(𝐴𝑡 − 𝐴𝑡−1)(𝐱𝑡 − 𝐱)

+
𝑇
∑

𝑡=1

1
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡

−
𝑇
∑

𝑡=1

𝛽
2
|(𝐱 − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|

2

≤ 𝛽
2
(𝐱1 − 𝐱)⊤𝐴0(𝐱1 − 𝐱) +

𝑇
∑

𝑡=1

1
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡

≤
𝛽𝜖‖𝐱1 − 𝐱‖22

2
+ 𝑑

2𝛽
ln
(

𝐺2𝑇
𝜖

+ 1
)

≤ 1
2𝛽

+ 𝑑
2𝛽

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

,

(36)

where the second inequality is due to 𝛽 = 𝛽, 𝐴𝑡 − 𝐴𝑡−1 = ∇𝑓𝑡(𝐱𝑡)∇𝑓𝑡(𝐱𝑡)
nd the fact that the matrix 𝐴 is positive definite, the third inequality
5

𝑡

s due to 𝐴0 = 𝜖𝐼𝑑 , ‖∇𝑓𝑡(𝐱𝑡)‖2 ≤ 𝐺 and Lemma 3, and the last inequality
s due to 𝜖 = 1

𝛽2𝐷2 and ‖𝐱1 − 𝐱‖2 ≤ 𝐷.
Finally, since 𝐱1 = argmin𝐱∈ 𝑟(𝐱) implies that 𝑟(𝐱1) ≤ 𝑟(𝐱𝑇+1), we

ave
𝑇
∑

𝑡=1
𝐹𝑡(𝐱𝑡) −

𝑇
∑

𝑡=1
𝐹𝑡(𝐱)

𝑇
∑

𝑡=1

(

𝑓𝑡(𝐱𝑡) + 𝑟(𝐱𝑡)
)

−
𝑇
∑

𝑡=1

(

𝑓𝑡(𝐱) + 𝑟(𝐱)
)

𝑇
∑

𝑡=1
𝑓𝑡(𝐱𝑡) +

𝑇
∑

𝑡=1
𝑟(𝐱𝑡+1) −

𝑇
∑

𝑡=1

(

𝑓𝑡(𝐱) + 𝑟(𝐱)
)

1
2𝛽

+ 𝑑
2𝛽

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

,

(37)

where the first inequality is derived by relaxing 𝑟(𝐱1) to 𝑟(𝐱𝑇+1) and the
ast inequality is due to (36).

.3. Proof of Theorem 2

Let 𝑓𝑡(𝐱) = 𝑓 (𝐱; 𝜉𝑡) and 𝐿(𝐱) = E𝜉∼𝑃 [𝑓 (𝐱; 𝜉)]. Because of Lemma 2,
e have

𝑡(𝐱𝑡) − 𝑓𝑡(𝐱∗) ≤ ∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱∗) − 𝛽
2
|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|

2. (38)

hen, let E𝑡−1 [𝐱] denote the expectation conditioned on the random-
ess until round 𝑡 − 1. By taking the expectation of both sides in the
bove inequality, we have

𝐿(𝐱𝑡) − 𝐿(𝐱∗) ≤ ∇𝐿(𝐱𝑡)⊤(𝐱𝑡 − 𝐱∗) − 𝛽
2
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2]

∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱∗) − 𝛽
2
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2]

+ ⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), 𝐱𝑡 − 𝐱∗⟩.

(39)

ccording to Lemma 1 and 𝛽 = 𝛽
3 , we have

∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱∗) + ∇𝑟(𝐱𝑡+1)⊤(𝐱𝑡+1 − 𝐱∗)
𝛽
6
‖𝐱𝑡 − 𝐱∗‖2𝐴𝑡

−
𝛽
6
‖𝐱𝑡+1 − 𝐱∗‖2𝐴𝑡

+ 3
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡
.

(40)

ombining the above two inequalities, we have

(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡+1)) − (𝐿(𝐱∗) + 𝑟(𝐱∗))
∇𝑓𝑡(𝐱𝑡)⊤(𝐱𝑡 − 𝐱∗) + ∇𝑟(𝐱𝑡+1)⊤(𝐱𝑡+1 − 𝐱∗)

−
𝛽
2
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2] + ⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), 𝐱𝑡 − 𝐱∗⟩

𝛽
6
‖(𝐱𝑡 − 𝐱∗)‖2𝐴𝑡

−
𝛽
6
‖(𝐱𝑡+1 − 𝐱∗)‖2𝐴𝑡

+ 3
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡

−
𝛽
2
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2] + ⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), (𝐱𝑡 − 𝐱∗)⟩

𝛽
6
‖(𝐱𝑡 − 𝐱∗)‖2𝐴𝑡−1

−
𝛽
6
‖(𝐱𝑡+1 − 𝐱∗)‖2𝐴𝑡

+ 3
2𝛽

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
𝑡

−
𝛽
2
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2] + ⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), (𝐱𝑡 − 𝐱∗)⟩

+
𝛽
6
|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|

2.

(41)

umming the two sides of the above inequality over 𝑡 = 1,… , 𝑇 , we
ave
𝑇
∑

𝑡=1
(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡+1)) −

𝑇
∑

𝑡=1
(𝐿(𝐱∗) + 𝑟(𝐱∗))

𝛽
‖(𝐱1 − 𝐱∗)‖2𝐴0

−
𝛽
‖(𝐱𝑇+1 − 𝐱∗)‖2𝐴𝑇

+ 3
𝑇
∑

‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1
6 6 2𝛽 𝑡=1 𝑡
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

a
𝑓
f
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c
c
v
r

t
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f

Table 2
Summary of datasets.

Datasets # Training # Testing # Features

a9a 32 561 16 281 123
mushrooms 5687 2437 112

+
𝛽
6

𝑇
∑

𝑡=1
|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|

2 −
𝛽
2

𝑇
∑

𝑡=1
E𝑡−1

[

|(𝐱∗ − 𝐱𝑡)⊤∇𝑓𝑡(𝐱𝑡)|
2]

+
𝑇
∑

𝑡=1
⟨∇𝐿(𝐱𝑡) − ∇𝑓𝑡(𝐱𝑡), (𝐱𝑡 − 𝐱∗)⟩.

(42)

Combining (42) with Lemma 4, with a probability at least 1 − 𝛿, we
have

𝑇
∑

𝑡=1
(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡+1)) −

𝑇
∑

𝑡=1
(𝐿(𝐱∗) + 𝑟(𝐱∗))

≤ 𝛽
6
‖(𝐱1 − 𝐱∗)‖2𝐴0

−
𝛽
6
‖(𝐱𝑇+1 − 𝐱∗)‖2𝐴𝑇

+ 3
2𝛽

𝑇
∑

𝑡=1
‖∇𝑓𝑡(𝐱𝑡)‖2𝐴−1

𝑡
+ 𝐶𝑇 ,1

+
𝛽
12

(

3
𝑇
∑

𝑡=1
|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|

2 −5
𝑇
∑

𝑡=1
E𝑡−1

[

|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|
2]
)

≤ 1
6𝛽

+ 3
2𝛽

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

+ 𝐶𝑇 ,1

+
𝛽
12

(

3
𝑇
∑

𝑡=1
|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|

2 −5
𝑇
∑

𝑡=1
E𝑡−1

[

|(𝐱𝑡 − 𝐱∗)⊤∇𝑓𝑡(𝐱𝑡)|
2]
)

,

(43)

where the second inequality is due to 𝐴0 = 𝜖𝐼𝑑 , 𝜖 = 1
𝛽2𝐷2 , ‖𝐱1 − 𝐱∗‖2 ≤

𝐷, ‖∇𝑓𝑡(𝐱𝑡)‖2 ≤ 𝐺, and Lemma 3.
Then, combining Lemma 5 with (43), with a probability at least

1 − 2𝛿, we have
𝑇
∑

𝑡=1
(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡+1)) −

𝑇
∑

𝑡=1
(𝐿(𝐱∗) + 𝑟(𝐱∗))

≤ 1
6𝛽

+ 3
2𝛽

ln
(

𝛽2𝐺2𝐷2𝑇 + 1
)

+ 𝐶𝑇 ,1 +
𝛽𝐶𝑇 ,2

3
,

(44)

where 𝐶𝑇 ,2 = 8𝐺2𝐷2 log
√

2𝑇+1
𝛿 + 𝐺2𝐷2

√

log 2𝑇+1
𝛿2

.
Moreover, because of 𝐱1 = argmin𝐱∈ 𝑟(𝐱), we have
𝑇
∑

𝑡=1
(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡+1)) −

𝑇
∑

𝑡=1
(𝐿(𝐱∗) + 𝑟(𝐱∗))

≥
𝑇
∑

𝑡=1
(𝐿(𝐱𝑡) + 𝑟(𝐱𝑡)) −

𝑇
∑

𝑡=1
(𝐿(𝐱∗) + 𝑟(𝐱∗))

≥𝑇 (𝐹 (𝐱̄𝑇 ) − 𝐹 (𝐱∗)),

(45)

where the last inequality is due to 𝑥̄𝑇 = 1
𝑇
∑𝑇

𝑡=1 𝐱𝑡 and Jensen’s inequal-
ity. Finally, by combining the above two inequalities, we complete this
proof.

5. Experiments

In this section, we perform numerical experiments to verify the
effectiveness of our ProxONS. First, we compare ProxONS against
FOBOS [1] and RDA [2] to show its ability to exploit the exp-concavity.
Moreover, we compare ProxONS with ONS [8] to show its ability to
exploit the regularization.

5.1. Experimental settings

We consider online 𝓁1-norm regularized logistic regression for bi-
nary classification on two real datasets—a9a and mushrooms from the
6

t

LIBSVM repository [29]. Both datasets are divided into the training part
and the testing part, and their details are summarized in Table 2.2 In
each round 𝑡, the learning algorithm first selects a decision 𝐱𝑡 from

= R𝑑 . Then, it receives a single training example
(

𝐰𝑡, 𝑦𝑡
)

where
𝐰𝑡 ∈ R𝑑 and 𝑦𝑡 ∈ {+1,−1}, and suffer the 𝓁1 norm regularized logistic
loss which is the sum of

𝑓𝑡(𝐱𝑡) = log
(

1 + exp
(

−𝑦𝑡𝐰⊤
𝑡 𝐱𝑡

))

(46)

nd 𝑟(𝐱𝑡) = 𝜆‖𝐱𝑡‖1, where 𝜆 = 0.001. It is well-known that the function
𝑡(𝐱) is convex and exp-concave [30]. Furthermore, the initial decision
or all methods is set to the zero vector. For FOBOS and RDA, we
et the learning rate as 𝜂𝑡 = 𝑐∕

√

𝑡 by searching the constant 𝑐 from
{1𝑒−3, 1𝑒−2,… , 100}. For ONS and ProxONS, the parameters 𝛽 and 𝜖
are also searched from {1𝑒−3, 1𝑒−2,… , 100}.

5.2. Experimental results

We adopt the average loss, the test accuracy, and the sparsity of the
final decision as the performance metrics. Fig. 1 shows the comparison
of the average loss and the test accuracy among different algorithms
on a9a and mushrooms. From the first line of Fig. 1, we find that
during the training process, our ProxONS outperforms FOBOS and
RDA in terms of the average loss, which verifies the advantage of
ProxONS in exploiting the exp-concavity. Moreover, we find that ONS
and our ProxONS perform similarly in terms of the average loss, which
is reasonable because the procedures of these two methods are very
similar except for the treatment of regularization. To further verify
the performance of different algorithms, we report the test accuracy as
shown in the second line of Fig. 1. It is evident that when the number
of training data increases, the overall test accuracy shows an increasing
trend, implying that all algorithms are effectively learning. Moreover,
ONS and our ProxONS perform better in terms of the test accuracy
compared to FOBOS and RDA, which is consistent with their theoretical
advantage on the regret bound. In summary, our algorithm’s effective-
ness is thoroughly demonstrated through comparisons of average loss
and test accuracy with other algorithms.

Furthermore, to verify the effect of regularization, we show the
sparsity of the final decision generated by different algorithms in Fig. 2.
We find that the final decision of ONS is dense, which is caused by
ignoring the composite structure. By contrast, the final decision of our
ProxONS is much more sparse than ONS, which verifies its ability to
exploit the regularization. Probably due to the sparsity of our ProxONS,
its test accuracy is slightly better than that of ONS, as shown in
the second line of Fig. 1. Additionally, we also notice that the final
decisions of RDA and FOBOS are more sparse than our ProxONS. In
the future, we will investigate how to further improve the sparsity of
our method.

6. Conclusions

In this paper, we propose the ProxONS method for the regularized
online exp-concave optimization. According to our analysis, it obtains
a regret bound of 𝑂(𝑑 log 𝑇 ) for any convex regularization, which is
more general than ONS for the non-regularized case, and better than
existing methods with an (

√

𝑇 ) regret bound for convex loss functions.
Furthermore, we demonstrate that our ProxONS with the standard
online-to-batch conversion can attain a high-probability 𝑂(𝑑 log 𝑇 ∕𝑇 )
onvergence rate for stochastic optimization with a regularized exp-
oncave objective. Finally, numerical experiments on two real datasets
erify the ability of our ProxONS to exploit the exp-concavity and the
egularization.

Notice that both ONS and our ProxONS need 𝑂(𝑑2) time to compute
he inverse of 𝐴𝑡 in each round. Existing studies [31,32] have combined
NS with matrix sketching [33,34] to address this problem. In the

uture, it is appealing to apply this idea to accelerate ProxONS.

2 The original mushrooms dataset does not split the training part and the
esting part. We randomly select 70% data for training.
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Fig. 1. Comparison of the average loss and the test accuracy among different algorithms.
Fig. 2. Comparison of the sparsity of the final decision among different algorithms.
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