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Abstract
We investigate decentralized online convex optimization (D-OCO), in which a set of local learn-
ers are required to minimize a sequence of global loss functions using only local computations
and communications. Previous studies have established O(n5/4ρ−1/2

√
T ) and O(n3/2ρ−1 log T )

regret bounds for convex and strongly convex functions respectively, where n is the number of
local learners, ρ < 1 is the spectral gap of the communication matrix, and T is the time horizon.
However, there exist large gaps from the existing lower bounds, i.e., Ω(n

√
T ) for convex functions

and Ω(n) for strongly convex functions. To fill these gaps, in this paper, we first develop a novel
D-OCO algorithm that can respectively reduce the regret bounds for convex and strongly convex
functions to Õ(nρ−1/4

√
T ) and Õ(nρ−1/2 log T ). The primary technique is to design an online

accelerated gossip strategy that enjoys a faster average consensus among local learners. Further-
more, by carefully exploiting spectral properties of a specific network topology, we enhance the
lower bounds for convex and strongly convex functions to Ω(nρ−1/4

√
T ) and Ω(nρ−1/2 log T ),

respectively. These results suggest that the regret of our algorithm is nearly optimal in terms of
T , n, and ρ for both convex and strongly convex functions. Finally, we propose a projection-free
variant of our algorithm to efficiently handle practical applications with complex constraints. Our
analysis reveals that the projection-free variant can achieve O(nT 3/4) and O(nT 2/3(log T )1/3)
regret bounds for convex and strongly convex functions with nearly optimal Õ(ρ−1/2

√
T ) and

Õ(ρ−1/2T 1/3(log T )2/3) communication rounds, respectively.
Keywords: online convex optimization, decentralized optimization, optimal regret, accelerated
gossip strategy, efficient algorithms

1. Introduction

Decentralized online convex optimization (D-OCO) (Yan et al., 2013; Hosseini et al., 2013; Zhang
et al., 2017; Wan et al., 2020, 2022) is a powerful learning framework for distributed applications
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with streaming data, such as distributed tracking in sensor networks (Li et al., 2002; Lesser et al.,
2003) and online packet routing (Awerbuch and Kleinberg, 2004, 2008). Specifically, it can be for-
mulated as a repeated game between an adversary and a set of local learners numbered by 1, . . . , n
and connected by a network, where the network is defined by an undirected graph G = ([n], E)
with the edge set E ⊆ [n]× [n]. In the t-th round, each learner i ∈ [n] first chooses a decision xi(t)
from a convex set K ⊆ Rd, and then receives a convex loss function ft,i(x) : K → R selected by
the adversary. The goal of each learner i is to minimize the regret in terms of the global function
ft(x) =

∑n
j=1 ft,j(x) at each round t, i.e.,

R(T, i) =
T∑
t=1

ft(xi(t))−min
x∈K

T∑
t=1

ft(x) (1)

where T denotes the time horizon.
Note that in the special case with n = 1, D-OCO reduces to the classical online convex opti-

mization (OCO) (Shalev-Shwartz, 2011; Hazan, 2016). There already exist many online algorithms
with optimal regret bounds for convex and strongly convex functions, e.g., online gradient descent
(OGD) (Zinkevich, 2003). However, these algorithms cannot be applied to the general D-OCO
problem, because they need direct access to the global function ft(x), which is unavailable for the
local learners. To be precise, there exist communication constraints in D-OCO: the learner i only
has local access to the function ft,i(x), and can only communicate with its immediate neighbors via
a single step of the gossip protocol (Xiao and Boyd, 2004; Boyd et al., 2006) based on a weight ma-
trix P ∈ Rn×n at each round.1 To address this limitation, the pioneering work of Yan et al. (2013)
extends OGD into the D-OCO setting, and achievesO(n5/4ρ−1/2

√
T ) andO(n3/2ρ−1 log T ) regret

bounds for convex and strongly convex functions respectively, where ρ < 1 is the spectral gap of
P . The key idea is to first apply a standard gossip step (Xiao and Boyd, 2004) over the decisions
of these local learners, and then perform a gradient descent step based on the local function. Later,
there has been a growing research interest in developing and analyzing D-OCO algorithms based
on the standard gossip step for various scenarios (Hosseini et al., 2013; Zhang et al., 2017; Lei
et al., 2020; Wan et al., 2020, 2021a, 2022; Wang et al., 2023). However, the best regret bounds for
D-OCO with convex and strongly convex functions remain unchanged. Moreover, there exist large
gaps from the lower bounds recently established by Wan et al. (2022), i.e., Ω(n

√
T ) for convex

functions and Ω(n) for strongly convex functions.
To fill these gaps, this paper first proposes a novel D-OCO algorithm that can achieve a regret

bound of Õ(nρ−1/4
√
T ) for convex functions and an improved regret bound of Õ(nρ−1/2 log T )

for strongly convex functions, respectively.2 Different from previous D-OCO algorithms that rely
on the standard gossip step, we make use of an accelerated gossip strategy (Liu and Morse, 2011)
to weaken the impact of decentralization on the regret. In the studies of offline and stochastic
optimization, it is well-known that the accelerated strategy enjoys a faster average consensus among
decentralized nodes (Lu and Sa, 2021; Ye and Chang, 2023; Ye et al., 2023). However, applying the
accelerated strategy to D-OCO is more challenging because it requires multiple communications in
each round, which violates the communication protocol of D-OCO. To tackle this issue, we design

1. More specifically, the essence of a single gossip step is to compute a weighted average of some parameters of these
local learners based on the matrix P . Moreover, following previous studies (Yan et al., 2013; Hosseini et al., 2013),
P is given beforehand, instead of being a choice of the algorithm.

2. We use the Õ(·) notation to hide constant factors as well as polylogarithmic factors in n, but not in T .
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ft,i(·) Source Upper Bound Lower Bound Regret Gap

cvx
Previous studies

O(n5/4ρ−1/2
√
T )

Yan et al. (2013);
Hosseini et al. (2013)

Ω(n
√
T )

Wan et al. (2022)
O(n1/4ρ−1/2)

This work O(nρ−1/4
√
T log n)

Corollary 1
Ω(nρ−1/4

√
T )

Theorem 2
O(
√

log n)

scvx
Previous studies O(n3/2ρ−1 log T )

Yan et al. (2013)
Ω(n)

Wan et al. (2022)
O(n1/2ρ−1 log T )

This work O(nρ−1/2(log n) log T )
Corollary 2

Ω(nρ−1/2 log T )
Theorem 4

O(log n)

Table 1: Summary of our results and the best previous results on the optimality of D-OCO. Abbre-
viations: convex→ cvx, strongly convex→ scvx.

ft,i(·) Source Regret Communication Rounds

cvx
Wan et al. (2022) O(n5/4ρ−1/2T 3/4) O(

√
T )

Corollary 3
O(nρ−1/4T 3/4

√
log n) O(

√
T )

O(nT 3/4) O(ρ−1/2
√
T log n)

scvx
Wan et al. (2022) O(n3/2ρ−1T 2/3(log T )1/3) O(T 1/3(log T )2/3)

Corollary 4
O(nρ−1/2T 2/3(log T )1/3 log n) O(T 1/3(log T )2/3)

O(nT 2/3(log T )1/3) O(ρ−1/2T 1/3(log T )2/3 log n)

Table 2: Summary of our projection-free algorithm and the best existing projection-free algorithm
for D-OCO. Abbreviations: convex→ cvx, strongly convex→ scvx.

an online accelerated gossip strategy by further incorporating a blocking update mechanism, which
allows us to allocate the communications required by each update into every round of a block.
Furthermore, we establish nearly matching lower bounds of Ω(nρ−1/4

√
T ) and Ω(nρ−1/2 log T )

for convex and strongly convex functions, respectively. Compared with existing lower bounds (Wan
et al., 2022), our bounds additionally uncover the effect of the spectral gap, by carefully exploiting
spectral properties of a specific network topology. Table 1 provides a comparison of our results on
the optimality of D-OCO with those of previous studies.

Finally, we notice that each learner of our algorithm needs to perform a projection operation per
round to ensure the feasibility of its decision, which could be computationally expensive in appli-
cations with complex constraints. For example, in online collaborative filtering (Hazan and Kale,
2012), the decision set consists of all matrices with bounded trace norm, and the corresponding pro-
jection needs to compute singular value decomposition of a matrix. To tackle this computational bot-
tleneck, we propose a projection-free variant of our algorithm by replacing the projection operation
with a more efficient linear optimization step. Analysis reveals that our projection-free algorithm
can achieve a regret bound of O(nT 3/4) with only Õ(ρ−1/2

√
T ) communication rounds for convex

functions, and a better regret bound of O(nT 2/3(log T )1/3) with fewer Õ(ρ−1/2T 1/3(log T )2/3)
communication rounds for strongly convex functions, respectively. In contrast, the state-of-the-art
projection-free D-OCO algorithm (Wan et al., 2022) only achieves worse O(n5/4ρ−1/2T 3/4) and
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O(n3/2ρ−1T 2/3(log T )1/3) regret bounds for convex and strongly convex functions respectively,
though the number of required communication rounds is less, i.e., O(

√
T ) for convex functions

and O(T 1/3(log T )2/3) for strongly convex functions. Moreover, even if using the same number of
communication rounds as Wan et al. (2022), we show that the regret bounds of our projection-free
algorithm only degenerate to Õ(nρ1/4T 3/4) and Õ(nρ1/2T 2/3(log T )1/3), which are still tighter
than those of Wan et al. (2022), respectively. It is worth noting that although these regret bounds of
our projection-free algorithm no longer match the aforementioned lower bounds, we further extend
the latter to demonstrate that the number of required communication rounds is nearly optimal for
achieving these regret bounds. Table 2 provides a comparison of our projection-free algorithm and
that of Wan et al. (2022).

A preliminary version of this paper was presented at the 37th Annual Conference on Learning
Theory in 2024 (Wan et al., 2024). In this paper, we have significantly enriched the preliminary
version by adding the following extensions.
• Different from Wan et al. (2024) that propose two algorithms to deal with convex and strongly

convex functions respectively, we unify them into a single one, and provide a unified analysis
to recover their regret bounds.
• For D-OCO with strongly convex functions, we improve the Ω(nρ−1/2) lower bound in Wan

et al. (2024) to Ω(nρ−1/2 log T ), which now can recover the classical Ω(log T ) lower bound
for OCO with strongly convex functions (Abernethy et al., 2008; Hazan and Kale, 2014).
• We propose a projection-free variant of our algorithm to efficiently handle complex con-

straints. It improves the regret of the state-of-the-art projection-free D-OCO algorithm (Wan
et al., 2022) while maintaining the same number of communication rounds.
• We establish Ω(nρ−1/4T/

√
C) and Ω(nρ−1/2T/C) lower bounds for convex and strongly

convex functions in a more challenging setting with only C communication rounds, which
imply that the communication complexity of our projection-free variant is nearly optimal.
• We demonstrate that the analysis of some existing algorithms (Hosseini et al., 2013; Wan

et al., 2022) can be refined to reduce the dependence of their current regret bounds on n to
only Õ(n). Although the refined regret is still not optimal, it may be of independent interest.

2. Related Work

In this section, we briefly review the related work on D-OCO, including the special case with n = 1
and the general case.

2.1 Special D-OCO with n = 1

D-OCO with n = 1 reduces to the classical OCO problem, which dates back to the seminal work
of Zinkevich (2003). Over the past decades, this problem has been extensively studied, and vari-
ous algorithms with optimal regret have been presented for convex and strongly convex functions,
respectively (Zinkevich, 2003; Shalev-Shwartz and Singer, 2007; Hazan et al., 2007; Abernethy
et al., 2008; Hazan and Kale, 2014). The closest one to this paper is follow-the-regularized-leader
(FTRL) (Shalev-Shwartz and Singer, 2007), which updates the decision (omitting the subscript of
the learner 1 for brevity) as

x(t+ 1) = argmin
x∈K

t∑
i=1

〈∇fi(x(i)),x〉+
1

η
‖x‖22 (2)
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where η is a parameter. By tuning η appropriately, it can achieve an optimal O(
√
T ) regret bound

for convex functions. Note that this algorithm is also known as dual averaging, especially in the
filed of offline and stochastic optimization (Nesterov, 2009; Xiao, 2009). Moreover, Hazan et al.
(2007) have proposed a variant of (2) for α-strongly convex functions, which makes the following
update

x(t+ 1) = argmin
x∈K

t∑
i=1

(
〈∇fi(x(i)),x〉+

α

2
‖x− x(i)‖22

)
= argmin

x∈K

t∑
i=1

〈∇fi(x(i))− αx(i),x〉+
tα

2
‖x‖22.

(3)

It is named as follow-the-approximate-leader (FTAL), and can achieve an optimal O(log T ) regret
bound for strongly convex functions.

Nonetheless, as first noticed by Hazan and Kale (2012), these optimal algorithms explicitly or
implicitly require a projection operation per round, which could become a computational bottleneck
for complex decision sets. To address this issue, Hazan and Kale (2012) propose a projection-free
variant of FTRL, and establish an O(T 3/4) regret bound for convex functions. Their key idea
is to approximately solve (2) with only one linear optimization step, which could be much more
efficiently carried out than the projection operation. Due to the efficiency, there has been a growing
research interest in developing projection-free OCO algorithms (Garber and Hazan, 2016; Levy and
Krause, 2019; Hazan and Minasyan, 2020; Garber and Kretzu, 2020, 2021; Wan and Zhang, 2021;
Wan et al., 2021b; Garber and Kretzu, 2022, 2023; Wan et al., 2023; Zhang et al., 2024; Wang et al.,
2025). Among these works, the most related one to this paper is Wan and Zhang (2021), in which
a projection-free variant of FTAL is proposed to achieve an improved regret bound of O(T 2/3) for
strongly convex functions.

2.2 General D-OCO with n ≥ 2

D-OCO is a generalization of OCO with n ≥ 2 local learners in the network defined by an undi-
rected graph G = ([n], E). The main challenge of D-OCO is that each learner i ∈ [n] is required
to minimize the regret in terms of the global function ft(x) =

∑n
j=1 ft,j(x), i.e., R(T, i) in (1),

but except the direct access to ft,i(x), it can only estimate the global information from the gossip
communication occurring via the weight matrix P . To tackle this challenge, Yan et al. (2013) pro-
pose a decentralized variant of OGD (D-OGD) by first applying the standard gossip step (Xiao and
Boyd, 2004) over the decisions of these local learners, and then performing a gradient descent step
according to the local function. For convex and strongly convex functions, D-OGD can achieve
O(n5/4ρ−1/2

√
T ) and O(n3/2ρ−1 log T ) regret bounds, respectively. Later, Hosseini et al. (2013)

propose a decentralized variant of FTRL (D-FTRL), which performs the following update

zi(t+ 1) =
∑
j∈Ni

Pijzj(t) +∇ft,i(xi(t))

xi(t+ 1) = argmin
x∈K

〈zi(t+ 1),x〉+
1

η
‖x‖22

(4)

for each learner i, where Ni = {j ∈ [n]|(i, j) ∈ E} ∪ {i} denotes the set including the immediate
neighbors of the learner i and itself. Note that the cumulative gradients

∑t
i=1∇fi(x(i)) used in
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(2) is replaced by a local variable zi(t + 1) that is computed by first applying the standard gossip
step over zi(t) of these local learners and then adding the local gradient ∇ft,i(xi(t)). For convex
functions, D-FTRL can also achieve the O(n5/4ρ−1/2

√
T ) regret bound.

The first projection-free algorithm for D-OCO is proposed by Zhang et al. (2017), and can be
viewed as a combination of D-FTRL and linear optimization steps. For convex functions, analo-
gous to the projection-free variant of FTRL (Hazan and Kale, 2012) in OCO, this algorithm can
achieve an O(n5/4ρ−1/2T 3/4) regret bound. After that, several improvements have been made to
projection-free D-OCO (Wan et al., 2020, 2021a, 2022; Wang et al., 2023). First, Wan et al. (2020)
demonstrate that by combining the projection-free algorithm in Zhang et al. (2017) with a blocking
update mechanism, the number of communication rounds can be reduced from O(T ) to O(

√
T )

while achieving the sameO(n5/4ρ−1/2T 3/4) regret bound for convex functions. If the functions are
strongly convex, Wan et al. (2021a) propose a projection-free and decentralized variant of FTAL
(Hazan et al., 2007), which can enjoy an improved regret bound ofO(n3/2ρ−1T 2/3(log T )1/3) with
even fewer O(T 1/3(log T )2/3) communication rounds. Then, Wan et al. (2022) unify these two
algorithms into a single one that inherits the theoretical guarantees for both convex and strongly
convex functions. Moreover, they also provide Ω(nT/

√
C) and Ω(nT/C) lower regret bounds

for any D-OCO algorithm with C communication rounds by respectively considering convex and
strongly convex functions. These lower bounds imply that the number of communication rounds re-
quired by their algorithm is (nearly) optimal in terms of T for achieving their current regret bounds.
Very recently, Wang et al. (2023) develop a randomized projection-free algorithm for D-OCO with
smooth functions, and achieve an expected regret bound of O(n5/4ρ−1/2T 2/3) with O(T 2/3) com-
munication rounds.

Additionally, we notice that if the projection operation is allowed, the unified algorithm in Wan
et al. (2022) can be simplified as performing the following update

zi(t+ 1) =
∑
j∈Ni

Pijzj(t) + (∇ft,i(xi(t))− αxi(t))

xi(t+ 1) = argmin
x∈K

〈zi(t+ 1),x〉+
tα

2
‖x‖22 + h‖x‖22

(5)

for each learner i, where α and h are two parameters. By setting α = 0 and h = 1/η, (5) re-
duces to D-FTRL and thus can also enjoy the O(n5/4ρ−1/2

√
T ) regret bound for convex func-

tions. For α-strongly convex functions, by simply setting h = 0, (5) becomes a decentralized
variant of FTAL because the local variable zi(t + 1) now is used to replace the cumulative infor-
mation

∑t
i=1(∇fi(x(i))−αx(i)) in (3). This subtle difference allows the algorithm to recover the

O(n3/2ρ−1 log T ) regret bound for strongly convex functions (see Appendix A for details). There-
fore, (5) can be referred to as decentralized follow-the-generalized-leader (D-FTGL). Moreover,
by setting C = O(T ), the communication-dependent lower bounds in Wan et al. (2022) reduce to
Ω(n
√
T ) and Ω(n) lower bounds for general D-OCO with convex and strongly convex functions,

respectively. These results imply that the existing O(n5/4ρ−1/2
√
T ) and O(n3/2ρ−1 log T ) upper

bounds are (nearly) tight in terms of T . However, there still exist gaps in terms of n and ρ between
these upper and lower bounds. Note that the value of ρ reflects the connectivity of the network—a
larger ρ implies better connectivity, and it could even be Ω(n−2) for “poorly connected” networks
such as the 1-connected cycle graph (Duchi et al., 2011). Therefore, these gaps on n and ρ cannot
be ignored, especially for large-scale distributed systems. In this paper, we fill these gaps up to
polylogarithmic factors in n.
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2.3 Discussions

Different from D-OCO, previous studies have proposed optimal algorithms for many different sce-
narios of decentralized offline and stochastic optimization (Scaman et al., 2017, 2018, 2019; Gor-
bunov et al., 2020; Kovalev et al., 2020; Dvinskikh and Gasnikov, 2021; Lu and Sa, 2021; Ye and
Chang, 2023; Ye et al., 2023; Song et al., 2024). Among these studies, the one closest to this paper is
Scaman et al. (2019), which investigates decentralized offline optimization with convex and strongly
convex functions. Let ρ̂ be the normalized eigengap of P , which could be close to ρ. Scaman et al.
(2019) have established optimal convergence rates ofO(ε−2 + ε−1ρ̂−1/2) andO(ε−1 + ε−1/2ρ̂−1/2)
to reach an ε precision for convex and strongly convex functions, respectively. However, it is worth
noting that D-OCO is more challenging than the offline setting due to the change of functions. Ac-
tually, it is easy to apply a standard online-to-batch conversion (Cesa-Bianchi et al., 2004) of any
D-OCO algorithm with regret R(T, i) to achieve an approximation error of O(R(T, i)/(nT )) for
decentralized offline optimization, but not vice versa. Moreover, one may notice that due to the
online-to-batch conversion, it is possible to use existing lower bounds in the offline setting (Scaman
et al., 2019) to derive Ω(n

√
T + nρ̂−1/2) and Ω(n + nρ̂−1T−1) lower bounds for the regret of D-

OCO with convex and strongly convex functions, respectively. However, for D-OCO, it is common
to consider the case where T is much larger than other problem constants, and these lower bounds
will reduce to the Ω(n

√
T ) and Ω(n) lower bounds specially established for D-OCO (Wan et al.,

2022). In addition, we want to emphasize that although the accelerated gossip strategy (Liu and
Morse, 2011) has been widely used in these previous studies on decentralized offline and stochastic
optimization, this paper is the first work to apply it in D-OCO.

3. Preliminaries

In this section, we introduce the necessary preliminaries including common assumptions and an al-
gorithmic ingredient. Specifically, similar to previous studies on D-OCO (Yan et al., 2013; Hosseini
et al., 2013), we introduce the following assumptions.

Assumption 1 The communication matrix P ∈ Rn×n is supported on the graph G = ([n], E),
symmetric, and doubly stochastic, which satisfies
• Pij > 0 only if (i, j) ∈ E or i = j;
•
∑n

j=1 Pij =
∑

j∈Ni Pij = 1,∀i ∈ [n];
•
∑n

i=1 Pij =
∑

i∈Nj Pij = 1,∀j ∈ [n].
Moreover, P is positive semidefinite, and its second largest singular value denoted by σ2(P ) is
strictly smaller than 1.

Assumption 2 At each round t ∈ [T ], the loss function ft,i(x) of each learner i ∈ [n] isG-Lipschitz
over K, i.e., |ft,i(x)− ft,i(y)| ≤ G‖x− y‖2 for any x,y ∈ K.

Assumption 3 The set K contains the origin, i.e., 0 ∈ K, and its radius is bounded by R, i.e.,
‖x‖2 ≤ R for any x ∈ K.

Assumption 4 At each round t ∈ [T ], the loss function ft,i(x) of each learner i ∈ [n] is α-strongly
convex over K, i.e., ft,i(y) ≥ ft,i(x) + 〈∇ft,i(x),y − x〉+ α

2 ‖y − x‖22 for any x,y ∈ K.

Note that Assumption 4 with α = 0 reduces to the case with general convex functions.
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Then, we briefly introduce the accelerated gossip strategy (Liu and Morse, 2011), which will be
used to develop our algorithms. Given a set of vectors denoted as ∇1, . . . ,∇n ∈ Rd, a naive idea
for approximating the average ∇̄ = 1

n

∑n
i=1∇i in the decentralized setting is to perform multiple

standard gossip steps (Xiao and Boyd, 2004), i.e., setting∇0
i = ∇i and updating as

∇k+1
i =

∑
j∈Ni

Pij∇kj for k = 0, 1, . . . , L− 1 (6)

where L ≥ 1 is the number of iterations. Under Assumption 1, it is well-known that ∇Li generated
by (6) provably converges to the average ∇̄ with the increase of L. However, Liu and Morse (2011)
have shown that it is not the most efficient way, and proposed an accelerated gossip strategy by
mixing the standard gossip step with an old averaging estimation, i.e., setting∇0

i = ∇−1i = ∇i and
updating as

∇k+1
i = (1 + θ)

∑
j∈Ni

Pij∇kj − θ∇k−1i for k = 0, 1, . . . , L− 1 (7)

where θ > 0 is the mixing coefficient. Let Xk =
[
(∇k1)>; . . . ; (∇kn)>

]
∈ Rn×d for any integer

k ≥ −1. For any integer k ≥ 0, it is not hard to verify that (7) ensures

Xk+1 = (1 + θ)PXk − θXk−1. (8)

This process enjoys the following convergence property, where X̄ =
[
∇̄>; . . . ; ∇̄>

]
∈ Rn×d.

Lemma 1 (Ye et al., 2023, Proposition 1) Under Assumption 1, for any L ≥ 1, the iterations of (8)
with θ = (1 +

√
1− σ22(P ))−1 ensure that

∥∥XL − X̄
∥∥
F
≤
√

14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L ∥∥X0 − X̄
∥∥
F
.

Remark 1 As in Lemma 1, our Assumption 1 on the communication matrix P is required mainly
for an easy application of the existing result in Ye et al. (2023). Actually, according to the original
analysis of Liu and Morse (2011) for the process in (8), P might not need to be symmetric and
positive semidefinite. However, they only demonstrate the accelerated convergence by bounding
the second largest eigenvalue of an augmented communication matrix P̃ regarding (8). To establish
a detailed convergence rate via this result, a complicated analysis similar to Ye et al. (2023) is still
required. Thus, we leave the extension to the case without the symmetric and positive semidefinite
assumption as a future work.

4. Main Results

In this section, we first present a novel algorithm with improved regret bounds for D-OCO, and
establish nearly matching lower bounds. Then, we develop a projection-free variant of our algorithm
to efficiently handle complex constraints.

4.1 A Novel Algorithm with Improved Regret Bounds

Before introducing our algorithms, we first compare the regret of D-OCO and OCO, which pro-
vides insights into our improvements. Specifically, compared with the O(

√
T ) regret of OGD and

8
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FTRL for OCO, the O(n5/4ρ−1/2
√
T ) regret of D-OGD and D-FTRL has an additional factor of

n5/4ρ−1/2. We notice that this factor reflects the effect of the network size and topology, and is
caused by the approximation error of the standard gossip step. For example, a critical part of the
analysis for D-FTRL (Hosseini et al., 2013) is the following bound

‖zi(t)− z̄(t)‖2 = O

(√
n

ρ

)
(9)

where zi(t) is defined in (4), z̄(t) = 1
n

∑n
i=1 zi(t) denotes the average zi(t) of all learners, and

ρ = 1 − σ2(P ). Since z̄(t) is also equal to
∑t−1

τ=1 ḡ(τ) where ḡ(τ) = 1
n

∑n
i=1∇fτ,i(xi(τ)), the

regret of D-FTRL can be upper bounded by the regret of a virtual centralized update with z̄(t) plus
the cumulative effect of the approximation error in (9) (Hosseini et al., 2013), i.e.,

R(T, i) = O

(
n

η
+ nηT

)
+O

(
nηT

√
n

ρ

)
= O

(
n

η
+
n3/2ηT

ρ

)
. (10)

By minimizing the bound in (10) with η = Θ(
√
ρ/(
√
nT )), we obtain the O(n5/4ρ−1/2

√
T ) regret

of D-FTRL.
Thus, to reduce the regret of D-OCO, we should control the approximation error caused by the

standard gossip step. Moreover, to handle convex and strongly convex functions with a unified al-
gorithm, there are two possible options: refining D-OGD or D-FTGL, i.e., the generalized variant
of D-FTRL in (5). However, the projection operation in D-OGD makes the analysis of the approxi-
mation error more complex. To this end, we propose to improve D-FTGL via the accelerated gossip
strategy in (7). Let di(t) = ∇ft,i(xi(t)) − αxi(t) and d̄(t) = 1

n

∑n
i=1 di(t). According to D-

FTGL, we now need to maintain a better zi(t) to approximate z̄(t) =
∑t−1

τ=1 d̄(τ), which is more
general than the above definition. A natural idea is to replace the standard gossip step in (5) with
multiple accelerated gossip steps, i.e., setting zi(1) = zL−1i (1) = 0 and computing zi(t) = zLi (t)
for any t ≥ 2 via the following iterations

zk+1
i (t) = (1 + θ)

∑
j∈Ni

Pijz
k
j (t)− θzk−1i (t) for k = 0, 1, . . . , L− 1 (11)

where z0i (t) = zi(t− 1) + di(t− 1), z−1i (t) = zL−1i (t− 1) + di(t− 1). One can prove that (11)
ensures (see Equation 23 in Section 5.1 for details)

zi(t) = zLi (t) =
t−1∑
τ=1

d
(t−τ)L
i (τ) (12)

where d(t−τ)L
i (τ) denotes the output of virtually performing (7) with∇i = di(τ) and L = (t−τ)L.

Due to the convergence behavior of the accelerated gossip strategy, we can control the error of
approximating z̄(t) under any desired level by using a large enough L. Unfortunately, this approach
requires multiple communications between these learners per round, which is not allowed by D-
OCO.

To address this issue, we design an online accelerated gossip strategy with only one communi-
cation per round. The key idea is to incorporate (11) into a blocking update mechanism (Garber and
Kretzu, 2020; Wan et al., 2022). To be precise, we divide the total T rounds into T/L blocks, and

9
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Algorithm 1 AD-FTGL
1: Input: α, h, θ, L
2: Initialization: set xi(1) = zi(1) = zL−1i (1) = 0,∀i ∈ [n]
3: for z = 1, . . . , T/L do
4: If 2 ≤ z, set z0i (z) = zi(z − 1) + di(z − 1), z−1i (z) = zL−1i (z − 1) + di(z − 1), ∀i ∈ [n]
5: for t = (z − 1)L+ 1, . . . , zL do
6: for each local learner i ∈ [n] do
7: Play xi(z), query ∇ft,i(xi(z)), and set k = t− (z − 1)L− 1
8: If 2 ≤ z, update zk+1

i (z) = (1 + θ)
∑

j∈Ni Pijz
k
j (z)− θz

k−1
i (z)

9: end for
10: end for
11: Set di(z) =

∑
t∈Tz(∇ft,i(xi(z))− αxi(z)),∀i ∈ [n], where Tz = {(z − 1)L+ 1, . . . , zL}

12: If 2 ≤ z, set zi(z) = zLi (z), ∀i ∈ [n]

13: Compute xi(z + 1) = argminx∈K 〈zi(z),x〉+ (z−1)Lα
2 ‖x‖22 + h‖x‖22,∀i ∈ [n]

14: end for

only maintain a fixed decision xi(z) for each learner i ∈ [n] in block z, where T/L is assumed to be
an integer without loss of generality. Let Tz = {(z− 1)L+ 1, . . . , zL} denote all rounds contained
in each block z. With some abuse of notations, we redefine di(z) =

∑
t∈Tz(∇ft,i(xi(z))−αxi(z))

and d̄(z) = 1
n

∑n
i=1 di(z) for each block z. In this way, we only need to maintain a local variable

zi(z) to approximate z̄(z) =
∑z−1

τ=1 d̄(τ) for each learner i in block z. The good news is that now L
communications can be used to update zi(z) per block by uniformly allocating them to every round
in the block. As a result, we set zi(1) = zL−1i (1) = 0, and compute zi(z) = zLi (z) for any z ≥ 2
in a way similar to (11), i.e., performing the following iterations during block z

zk+1
i (z) = (1 + θ)

∑
j∈Ni

Pijz
k
j (z)− θzk−1i (z) for k = 0, 1, . . . , L− 1

where z0i (z) = zi(z − 1) + di(z − 1) and z−1i (z) = zL−1i (z − 1) + di(z − 1). Then, inspired by
D-FTGL in (5), we initialize with xi(1) = 0, and set the decision xi(z + 1) for any i ∈ [n] and
z ≥ 1 as

xi(z + 1) = argmin
x∈K

〈zi(z),x〉+
(z − 1)Lα

2
‖x‖22 + h‖x‖22. (13)

We name the proposed algorithm as accelerated decentralized follow-the-generalized-leader (AD-
FTGL), and summarize the complete procedure in Algorithm 1.

In the following, we first present a lemma regarding the approximation error ‖zi(z)− z̄(z)‖2 of
AD-FTGL, which demonstrates the advantage of using the accelerated gossip strategy.

Lemma 2 Let z̄(z) =
∑z−1

τ=1 d̄(τ), where d̄(τ) = 1
n

∑n
i=1 di(τ), and

θ =
1

1 +
√

1− σ22(P )
, L =

⌈ √
2 ln(
√

14n)

(
√

2− 1)
√

1− σ2(P )

⌉
. (14)

Under Assumptions 1, 2, 3, and 4, for any i ∈ [n] and z ∈ [T/L], Algorithm 1 with θ, L defined in
(14) ensures

‖zi(z)− z̄(z)‖2 ≤ 3L(G+ αR).

10
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From Lemma 2, our AD-FTGL can enjoy an error bound of O(ρ−1/2 log n) for approximating
z̄(z), which is tighter than the O(ρ−1

√
n) error bound in (9). By exploiting this improvement, we

establish the following guarantee on the regret bound of AD-FTGL.

Theorem 1 Under Assumptions 1, 2, 3, and 4, for any i ∈ [n], Algorithm 1 with θ, L defined in (14)
ensures

R(T, i) ≤ 3nLG

T/L∑
z=2

3L(G+ αR)

(z − 2)Lα+ 2h
+

T/L∑
z=1

4L(G+ 2αR)

zLα+ 2h

+ nhR2. (15)

Then, by combining Theorem 1 with suitable α and h, we can achieve specific regret bounds for
convex and strongly convex functions, respectively.

Corollary 1 Under Assumptions 1, 2, 3, and 4 with α = 0, for any i ∈ [n], Algorithm 1 with α = 0,
h =
√

11LTG/R, and θ, L defined in (14) ensures

R(T, i) ≤ 2nGR
√

11LT .

Corollary 2 Under Assumptions 1, 2, 3, and 4 with α > 0, for any i ∈ [n], Algorithm 1 with α > 0,
h = αL, and θ, L defined in (14) ensures

R(T, i) ≤ 3nLG(7G+ 11αR)(1 + ln(T/L))

α
+ nαLR2.

Corollary 1 shows that all the learners of AD-FTGL enjoys a regret bound of O(nρ−1/4
√
T log n)

for convex functions, which is tighter than the existing O(n5/4ρ−1/2
√
T ) regret bound (Yan et al.,

2013; Hosseini et al., 2013) in terms of both n and ρ. From Corollary 2, all the learners of AD-
FTGL can exploit the strong convexity of functions to achieve an O(nρ−1/2(log n) log T ) regret
bound, which has a much tighter dependence on T than the regret bound established by only using
the convexity condition. Moreover, it is better than the existing O(n3/2ρ−1 log T ) regret bound for
strongly convex functions (Yan et al., 2013) in terms of both n and ρ.

Remark 2 One may notice that the values of θ and L are carefully selected to establish the theoret-
ical guarantees of our AD-FTGL. To emphasize their significance, we further consider two extreme
cases: one with θ = 0 and the other with L = 1. First, by setting θ = 0, our AD-FTGL is equivalent
to improving D-FTGL by only using multiple standard gossip steps. It is easy to verify that due to
the slower convergence of standard gossip steps (Xiao and Boyd, 2004), this extreme case requires
a larger L = O(ρ−1 log n) to achieve an even worse error bound ofO(ρ−1 log n) for approximating
z̄(z). Correspondingly, the regret bounds of AD-FTGL for convex and strongly convex functions
will degenerate to O(nρ−1/2

√
T log n) and O(nρ−1(log n) log T ). Although these bounds are still

tighter than the existing O(n5/4ρ−1/2
√
T ) and O(n3/2ρ−1 log T ) regret bounds respectively, their

dependence on ρ is worse than the regret bounds achieved in Corollaries 1 and 2. Moreover, by
revisiting the analysis of D-FTGL (Wan et al., 2022), we show that the approximation error of its
standard gossip step can be improved to O(ρ−1 log n), instead of O(ρ−1

√
n) in (9) (see Appendix

A for details). This result allows us to establish the O(nρ−1/2
√
T log n) and O(nρ−1(log n) log T )

regret bounds for convex and strongly convex functions via the original D-FTGL. In other words,

11
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it is unnecessary to combine the blocking update mechanism with the standard gossip step. In con-
trast, the blocking update mechanism is critical for exploiting the accelerated gossip strategy. Note
that if L = 1, our AD-FTGL becomes a non-blocked combination of D-FTGL with the accelerated
gossip strategy. Following previous studies on D-OCO (Yan et al., 2013; Hosseini et al., 2013),
such a non-blocked combination may be more natural than the blocked version. However, in this
way, the distance between zi(z), which satisfies (12) with t = z and L = 1, and z̄(z) cannot be
controlled as desired. Specifically, due to the newly added component in zi(z), i.e., dz−τi (τ) in (12)
for τ close to z − 1, we can only modify the analysis of Lemma 2 to derive a worse error bound
of O(ρ−1/2

√
n). Correspondingly, the regret bounds of AD-FTGL for convex and strongly convex

functions will degenerate to O(n5/4ρ−1/4
√
T ) and O(n3/2ρ−1/2 log T ), whose dependence on n is

much worse than the regret bounds achieved in Corollaries 1 and 2.

4.2 Lower Bounds

Although there still exist gaps between our improved regret bounds and the Ω(n
√
T ) and Ω(n)

lower bounds established by Wan et al. (2022), this is mainly because they do not take the decen-
tralized structure into account. To fill these gaps, we maximize the hardness of D-OCO by con-
sidering the 1-connected cycle graph (Duchi et al., 2011), i.e., constructing the graph G by placing
the n nodes on a circle and only connecting each node to one neighbor on its right and left. In this
topology, the adversary can make at least one learner, e.g., learner 1, suffer Ω(n) communication
delays for receiving the information of the global function ft(x). Because of the Ω(n) communi-
cation delays, we can establish Ω(n

√
nT ) and Ω(n2) lower bounds for convex and strongly convex

functions, respectively. Then, by exploiting the dependence of spectral properties on the network
size n, we obtain lower bounds involving the spectral gap. Moreover, inspired by Wan et al. (2022),
we also make an extension to obtain the following lower bounds for the more challenging setting
with only C communication rounds.

Theorem 2 Suppose K = [−R/
√
d,R/

√
d]d which satisfies Assumption 3, and n = 2(m+ 1) for

some positive integerm. For any D-OCO algorithm communicatingC rounds before round T , there
exists a sequence of loss functions satisfying Assumption 2, a graph G = ([n], E), and a matrix P
satisfying Assumption 1 such that

if n ≤ 8C + 16,R(T, 1) ≥ n
√
πRGT

16(1− σ2(P ))1/4
√
C + 1

, and otherwise, R(T, 1) ≥ nRGT

4
.

Theorem 3 Suppose K = [−R/
√
d,R/

√
d]d which satisfies Assumption 3, and n = 2(m + 1)

for some positive integer m. For any D-OCO algorithm communicating C rounds before round T ,
there exists a sequence of loss functions satisfying Assumption 4 and Assumption 2 with G = 2αR,
a graph G = ([n], E), and a matrix P satisfying Assumption 1 such that

if n ≤ 8C + 16,R(T, 1) ≥ απnR2T

256(C + 1)
√

1− σ2(P )
, and otherwise, R(T, 1) ≥ αnR2T

16
.

Note that in previous studies (Yan et al., 2013; Hosseini et al., 2013) and this paper, the upper regret
bounds of D-OCO algorithms generally hold for all possible graphs and communication matrices P
satisfying Assumption 1. Therefore, although lower bounds in our Theorems 2 and 3 only hold for
a specific choice of the graph and P , they are sufficient to prove the tightness of the upper bound in

12



OPTIMAL AND EFFICIENT ALGORITHMS FOR DECENTRALIZED ONLINE CONVEX OPTIMIZATION

general. Specifically, by combining Theorem 2 with C = O(T ), we can establish a lower bound of
Ω(nρ−1/4

√
T ) for D-OCO with convex functions, which matches the O(nρ−1/4

√
T log n) regret

of our AD-FTGL up to polylogarithmic factors in n. For D-OCO with strongly convex functions,
a lower bound of Ω(nρ−1/2) can be established by combining Theorem 3 with C = O(T ), which
matches the O(nρ−1/2(log n) log T ) regret of our AD-FTGL up to polylogarithmic factors in both
n and T .

Now, our AD-FTGL have been shown to be nearly optimal for D-OCO with both convex and
strongly convex functions. Nonetheless, there still exists an unsatisfactory point in the lower bound
for strongly convex functions—it cannot recover the well-known Ω(log T ) lower bound for OCO
with strongly convex functions (Abernethy et al., 2008; Hazan and Kale, 2014). To address this
issue, we establish the following result by extending the analysis of Hazan and Kale (2014) from
OCO into D-OCO.

Theorem 4 Suppose K = [0, R/
√
d]d, which satisfies Assumption 3 and n = 2(m + 1) for some

positive integer m. For any D-OCO algorithm, if 16n + 1 ≤ T , there exists a sequence of loss
functions satisfying Assumption 4 and Assumption 2 with G = αR, a graph G = ([n], E), and a
matrix P satisfying Assumption 1 such that

R(T, 1) ≥ 16−5απ(log16(30(T − 1)/n)− 2)(n− 2)R2

4
√

1− σ2(P )
.

Compared with Theorem 3, Theorem 4 establishes an improved lower bound of Ω(nρ−1/2 log T )
for D-OCO with strongly convex functions, which matches the O(nρ−1/2(log n) log T ) regret of
our AD-FTGL up to polylogarithmic factors in only n.

Remark 3 One may also wonder whether it is possible to extend the result in Theorem 4 into the
setting with only C communication rounds. However, there do exist some technical challenges for
this extension (see discussions at the end of the proof of Theorem 4 for details), and thus we leave
it as a future work.

4.3 A Projection-free Variant of Our Algorithm

Furthermore, to efficiently handle applications with complex constraints, we propose a projection-
free variant of our AD-FTGL. Following the existing projection-free D-OCO algorithm in Wan
et al. (2022), our main idea is to combine AD-FTGL with conditional gradient (CG)—a classical
projection-free algorithm for offline optimization (Frank and Wolfe, 1956; Jaggi, 2013). Specifi-
cally, the detailed procedure of CG is outlined in Algorithm 2. Given a function F (x) : K 7→ R and
an initial point y0 = xin ∈ K, it iteratively performs K linear optimization steps as shown from
steps 3 to 7, and finally outputs xout = yK . To make AD-FTGL projection-free, it is natural to
approximately solve (13) via CG.

However, there are still some technical details that require careful attention. First, for every
invocation of CG, the number of iterations must equal to the block size, i.e., K = L, which ensures
that each learner at most requires T linear optimization steps in total. Otherwise, even only using
linear optimization steps, the time complexity could be equivalent to that of projection-based algo-
rithms. Second, a straightforward combination of (13) and CG requires the algorithm to stop at the
end of each block and wait until L linear optimization steps are completed. To avoid this issue, we

13
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Algorithm 2 CG
1: Input: K, K, F (x), xin

2: Initialization: y0 = xin

3: for k = 0, . . . ,K − 1 do
4: vk = argminx∈K〈∇F (yk),x〉
5: sk = argmins∈[0,1] F (yk + s(vk − yk))
6: yk+1 = yk + sk(vk − yk)
7: end for
8: return xout = yK

Algorithm 3 Projection-free Variant of AD-FTGL
1: Input: α, h, θ, L, L′

2: Initialization: set xi(1) = xi(2) = zi(1) = zL
′−1

i (1) = 0, ∀i ∈ [n]
3: for z = 1, . . . , T/L do
4: If 2 ≤ z, define Fz,i(x) = 〈zi(z − 1),x〉+ (z−2)Lα

2 ‖x‖22 + h‖x‖22, ∀i ∈ [n]

5: If 2 ≤ z, set z0i (z) = zi(z − 1) + di(z − 1), z−1i (z) = zL
′−1

i (z − 1) + di(z − 1),∀i ∈ [n]
6: for t = (z − 1)L+ 1, . . . , zL do
7: for each local learner i ∈ [n] do
8: Play xi(z), query ∇ft,i(xi(z)), and set k = t− (z − 1)L− 1
9: If 2 ≤ z and k < L′, update zk+1

i (z) = (1 + θ)
∑

j∈Ni Pijz
k
j (z)− θz

k−1
i (z)

10: end for
11: end for
12: Set di(z) =

∑
t∈Tz(∇ft,i(xi(z))− αxi(z)),∀i ∈ [n], where Tz = {(z − 1)L+ 1, . . . , zL}

13: If 2 ≤ z, set zi(z) = zL
′

i (z) and compute xi(z + 1) = CG(K, L, Fz,i(x),xi(z)),∀i ∈ [n]
14: end for

simply set xi(1) = xi(2) = 0, and then compute xi(z + 1) based on zi(z − 1), rather than zi(z)
used in (13), i.e., computing

xi(z + 1) = CG(K, L, Fz,i(x),xi(z))

where Fz,i(x) denotes the intermediate objective function based on zi(z − 1), i.e.,

Fz,i(x) = 〈zi(z − 1),x〉+
(z − 2)Lα

2
‖x‖22 + h‖x‖22.

In this way, the L linear optimization steps required by CG can be uniformly allocated to every
round in block z, since zi(z − 1) is available at the beginning of this block. Last, inspired by
Wan et al. (2022), to control the approximation error of CG, L now should be much larger than
that defined in (14). Note that the latter is sufficient for generating a good approximation of z̄(z).
Thus, we keep the number of accelerated gossip steps used in each block unchanged, and denote
the specific value by L′. This enables us to achieve sublinear communication complexity.

The complete procedure of our projection-free algorithm is summarized in Algorithm 3. Despite
its simplicity, we will demonstrate that this algorithm can improve the regret bounds of the exist-
ing projection-free D-OCO algorithm (Wan et al., 2022), while still ensuring the nearly optimal
communication complexity.
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By combining our original analysis of AD-FTGL with the convergence property of CG, we first
establish the following guarantee for the regret bound of our projection-free algorithm.

Theorem 5 Under Assumptions 1, 2, 3, and 4, for any i ∈ [n], Algorithm 3 with

θ =
1

1 +
√

1− σ22(P )
, L′ =

⌈ √
2 ln(
√

14n)

(
√

2− 1)
√

1− σ2(P )

⌉
(16)

and L ≥ L′ ensures

R(T, i) ≤ 3nLG

T/L∑
z=3

3L(G+ αR)

(z − 3)Lα+ 2h
+

T/L∑
z=1

6L(G+ 2αR)

(z − 1)Lα+ 2h

+ nhR2 +
12nGRT√
L+ 2

. (17)

Compared with Theorem 1, the key difference of Theorem 5 is the term 12nGRT/
√
L+ 2 in (17),

which is caused by the approximation error of CG. On the one hand, to make this term sublinear
in T , the final regret bound derived from Theorem 5 must be worse than that previously derived
from Theorem 1. This is a common price for achieving the projection-free property. On the other
hand, since the number of communication rounds used in Algorithm 3 is TL′/L, the choice of L
for the trade-off between this term and other terms in (17) is also critical for reducing the communi-
cation complexity. Moreover, we notice that to reduce the communication complexity, the existing
projection-free D-OCO algorithm in Wan et al. (2022) only communicates once per block. In con-
trast, our Algorithm 3 communicates L′ times per block. This subtle difference allows us to further
make different trade-offs between the regret and communication complexity.

Specifically, by combining Theorem 5 with suitable α, h, and L, we can establish specific regret
bounds for our projection-free algorithm.

Corollary 3 Suppose Assumptions 1, 2, 3, and 4 with α = 0 hold. For any i ∈ [n], Algorithm 3
with α = 0, h =

√
14LTG/R, L =

√
TL′, and θ, L′ defined in (16) ensures

R(T, i) ≤ 2
√

14nGR
√
L′T 3/4 +

12nGRT 3/4

√
L′

. (18)

Moreover, if (16) satisfies L′ ≤
√
T , for any i ∈ [n], Algorithm 3 with α = 0, h =

√
14LTG/R,

L =
√
T , and θ, L′ defined in (16) ensures

R(T, i) ≤ (2
√

14 + 12)nGRT 3/4. (19)

Corollary 4 Suppose Assumptions 1, 2, 3, and 4 with α > 0 hold. For any i ∈ [n], Algorithm 3
with α > 0, h = αL, L = T 2/3(lnT )−2/3L′, and θ, L′ defined in (16) ensures

R(T, i) ≤3nG(9G+ 15αR)T 2/3L′((lnT )−2/3 + (lnT )1/3)

α

+ nαT 2/3L′R2(lnT )−2/3 +
12nGRT 2/3(lnT )1/3√

L′
.

(20)

Moreover, if (16) satisfies L′ ≤ T 2/3(lnT )−2/3, for any i ∈ [n], Algorithm 3 with α > 0, h = αL,
L = T 2/3(lnT )−2/3, and θ, L′ defined in (16) ensures

R(T, i) ≤3nG(9G+ 15αR)T 2/3((lnT )−2/3 + (lnT )1/3)

α

+ nαT 2/3R2(lnT )−2/3 + 12nGRT 2/3(lnT )1/3.

(21)
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Note that both Corollaries 3 and 4 present two choices for parameters of our Algorithm 3. From (18)
and (20), our projection-free algorithm can enjoy an O(nρ−1/4

√
log nT 3/4) regret bound for con-

vex functions with O(
√
T ) communication rounds, and an O(nρ−1/2T 2/3(log T )1/3 log n) regret

bound for strongly convex functions with O(T 1/3(log T )2/3) communication rounds. In contrast,
with the same number of communication rounds, the existing projection-free algorithm in Wan et al.
(2022) only achieves the worse O(n5/4ρ−1/2T 3/4) and O(n3/2ρ−1T 2/3(log T )1/3) regret bounds
for convex functions and strongly convex functions, respectively. Since their projection-free al-
gorithm is a variant of D-FTGL, this comparison implies that our projection-free algorithm can
simply inherit the improvement of AD-FTGL over D-FTGL. Besides that, from (19) and (21), our
projection-free algorithm can further reduce regret bounds for convex and strongly convex func-
tions to O(nT 3/4) and O(nT 2/3(log T )1/3) by increasing the number of communication rounds to
O(ρ−1/2

√
T log n) and O(ρ−1/2T 1/3(log T )2/3 log n), respectively. This is somewhat surprising

since without other additional assumptions, even running existing centralized projection-free OCO
algorithms (Hazan and Kale, 2012; Wan and Zhang, 2021) over the global function ft(x) can only
achieve the same regret bounds (up to polylogarithmic factors in T for strongly convex functions).
Finally, according to the lower bounds in Theorems 2 and 3, the number of communication rounds
required by our projection-free algorithm to achieve the above regret bounds is optimal up to poly-
logarithmic factors in n for convex functions, and polylogarithmic factors in n and T for strongly
convex functions, respectively.

5. Theoretical Analysis

Here, we provide the proofs of our theoretical guarantees on AD-FTGL, lower bounds, and the
projection-free variant of AD-FTGL. The refined analysis for D-FTGL can be found in the appendix.

5.1 Proof of Lemma 2

Let d0
i (z) = d−1i (z) = di(z). For any i ∈ [n], z ∈ [T/L− 1], and any non-negative integer k, we

first define a virtual update as

dk+1
i (z) = (1 + θ)

∑
j∈Ni

Pijd
k
j (z)− θdk−1i (z). (22)

In the following, we will prove that for any z = 2, . . . , T/L, Algorithm 1 ensures

zki (z) =
z−1∑
τ=1

d
(z−τ−1)L+k
i (τ), ∀k = 1, . . . , L (23)

by the induction method.
For z = 2, it is easy to verify that (23) holds due to z0i (2) = z−1i (2) = di(1) and (22). Then,

we assume that (23) holds for some z ≥ 2, and prove it also holds for z + 1. From step 4 of our
Algorithm 1, we have

z0i (z + 1) = zi(z) + di(z) = zLi (z) + d0
i (z)

(23)
=

z∑
τ=1

d
(z−τ)L
i (τ),

z−1i (z + 1) = zL−1i (z) + di(z) = zL−1i (z) + d−1i (z)
(23)
=

z∑
τ=1

d
(z−τ)L−1
i (τ).

(24)
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By combining (24) with step 8 of Algorithm 1, for k = 1, we have

zki (z + 1) =(1 + θ)
∑
j∈Ni

Pijz
k−1
j (z + 1)− θzk−2i (z + 1)

=(1 + θ)
∑
j∈Ni

Pij

z∑
τ=1

d
(z−τ)L+k−1
j (τ)− θ

z∑
τ=1

d
(z−τ)L−1+k−1
i (τ)

=
z∑

τ=1

(1 + θ)
∑
j∈Ni

Pijd
(z−τ)L+k−1
j (τ)− θd(z−τ)L−1+k−1

i (τ)


(22)
=

z∑
τ=1

d
(z−τ)L+k
i (τ).

(25)

By repeating (25) for k = 2, . . . , L, the proof of (23) for z + 1 is completed.
Then, from (23), for any i ∈ [n] and z = 2, . . . , T/L, we have

‖zi(z)− z̄(z)‖2 =

∥∥∥∥∥
z−1∑
τ=1

d
(z−τ)L
i (τ)−

z−1∑
τ=1

d̄(τ)

∥∥∥∥∥
2

≤
z−1∑
τ=1

∥∥∥d(z−τ)L
i (τ)− d̄(τ)

∥∥∥
2
. (26)

To further analyze the right side of (26), we define

Xk =
[
dk1(τ)>; . . . ;dkn(τ)>

]
∈ Rn×d

for any integer k ≥ −1 and X̄ =
[
d̄(τ)>; . . . ; d̄(τ)>

]
∈ Rn×d. According to (22), it is not hard to

verify that the sequence of X1, . . . , XL follows the update rule in (8).
Let c = 1− 1/

√
2. Due to Lemma 1, for any τ < z, we have∥∥∥X(z−τ)L − X̄

∥∥∥
F
≤
√

14
(

1− c
√

1− σ2(P )
)(z−τ)L ∥∥X0 − X̄

∥∥
F

≤
√

14
(

1− c
√

1− σ2(P )
)(z−τ)L (∥∥X0

∥∥
F

+
∥∥X̄∥∥

F

)
=
√

14
(

1− c
√

1− σ2(P )
)(z−τ)L√√√√ n∑

i=1

‖di(τ)‖22 +
√
n‖d̄(τ)‖22

 .

(27)

Because of Assumptions 2 and 3, for any z ∈ [T/L] and i ∈ [n], it is easy to verify that

‖di(z)‖2 =

∥∥∥∥∥∑
t∈Tz

(∇ft,i(xi(z))− αxi(z))

∥∥∥∥∥
2

≤ L(G+ αR),

‖d̄(z)‖2 =

∥∥∥∥∥ 1

n

n∑
i=1

di(z)

∥∥∥∥∥
2

≤ L(G+ αR).

(28)

By combining (27) with (28), for any i ∈ [n] and τ < z, we have∥∥∥d(z−τ)L
i (τ)− d̄(τ)

∥∥∥
2
≤
∥∥∥X(z−τ)L − X̄

∥∥∥
F

≤2
√

14n
(

1− c
√

1− σ2(P )
)(z−τ)L

L(G+ αR).
(29)
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Moreover, because of the value of L in (14), we have

ε =
(

1− c
√

1− σ2(P )
)L
≤
(

1− c
√

1− σ2(P )
) ln(

√
14n)

c
√

1−σ2(P )

≤
(

1− c
√

1− σ2(P )
) ln(

√
14n)

ln(1/(1−c
√

1−σ2(P ))) =
1√
14n

(30)

where the second inequality is due to ln(x−1) ≥ 1− x for any x > 0.
By combining (26) with (29) and (30), for any i ∈ [n] and z = 2, . . . , T/L, we have

‖zi(z)− z̄(z)‖2 ≤2L(G+ αR)
√

14n

z−1∑
τ=1

ε(z−τ)
(30)
≤ 2L(G+ αR)

z−1∑
τ=1

ε(z−τ−1)

≤2L(G+ αR)

1− ε
(30)
≤ 2L(G+ αR) +

2L(G+ αR)√
14n− 1

≤ 3L(G+ αR)

(31)

where the last inequality is due to
√

14n > 3 for any n ≥ 1. Now, we can complete the proof of
Lemma 2 by combining (31) with ‖zi(1)− z̄(1)‖2 = 0.

5.2 Proof of Theorem 1

According to Algorithm 1, the total T rounds are divided into T/L blocks. For any z ∈ [T/L+ 1],
we define a virtual decision

x̄(z) = argmin
x∈K

〈x, z̄(z)〉+
(z − 1)Lα

2
‖x‖22 + h‖x‖22 (32)

where z̄(z) =
∑z−1

τ=1 d̄(τ) and d̄(τ) = 1
n

∑n
i=1 di(τ). In the following, we will bound the regret

of any learner i by analyzing the regret of x̄(2), . . . , x̄(T/L + 1) on a sequence of loss functions
defined by d̄(1), . . . , d̄(T/L) and the distance ‖xi(z)− x̄(z+ 1)‖2 for any z ∈ [T/L]. To this end,
we first introduce two useful lemmas.

Lemma 3 (Garber and Hazan, 2016, Lemma 6.6) Let {`t(x)}Tt=1 be a sequence of functions and
x∗t ∈ argminx∈K

∑t
τ=1 `τ (x) for any t ∈ [T ]. Then, it holds that

T∑
t=1

`t(x
∗
t )−min

x∈K

T∑
t=1

`t(x) ≤ 0.

Lemma 4 (Duchi et al., 2011, Lemma 5) Let ΠK(u, η) = argminx∈K〈u,x〉 + 1
η‖x‖

2
2. For any

u,v ∈ Rd, we have
‖ΠK(u, η)−ΠK(v, η)‖2 ≤

η

2
‖u− v‖2.

Let `z(x) = 〈x, d̄(z)〉 + Lα
2 ‖x‖

2
2 for any z ∈ [T/L]. By combining Lemma 3 with (32), for any

x ∈ K, it is easy to verify that

T/L∑
z=1

`z(x̄(z + 1))−
T/L∑
z=1

`z(x) ≤ h
(
‖x‖22 − ‖x̄(2)‖22

)
≤ hR2 (33)
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where the last inequality is due to Assumption 3 and ‖x̄(2)‖22 ≥ 0.
Then, we also notice that for any z = 2, . . . , T/L, Algorithm 1 ensures

xi(z) = argmin
x∈K

〈x, zi(z − 1)〉+
(z − 2)Lα

2
‖x‖22 + h‖x‖22. (34)

By combining Lemma 4 with (32) and (34), for any z = 2, . . . , T/L, we have

‖xi(z)− x̄(z − 1)‖2 ≤
‖zi(z − 1)− z̄(z − 1)‖2

(z − 2)Lα+ 2h
≤ 3L(G+ αR)

(z − 2)Lα+ 2h
(35)

where the last inequality is due to Lemma 2.
To bound ‖xi(z) − x̄(z + 1)‖2, we still need to analyze the term ‖x̄(z) − x̄(z + 1)‖2 for any

z ∈ [T/L]. Let Fz(x) =
∑z

τ=1 `τ (x) + h‖x‖22 for any z ∈ [T/L]. It is easy to verify that Fz(x)
is (zLα+ 2h)-strongly convex over K, and x̄(z + 1) = argminx∈K Fz(x). Note that as proved by
Hazan and Kale (2012), for any α-strongly convex function f(x) : K 7→ R and x ∈ K, it holds that

α

2
‖x− x∗‖22 ≤ f(x)− f(x∗) (36)

where x∗ = argminx∈K f(x). Moreover, for any x,y ∈ K and z ∈ [T/L], we have

|`z(x)− `z(y)| ≤ |〈∇`z(x),x− y〉| ≤ ‖∇`z(x)‖2‖x− y‖2

=‖d̄(z) + αLx‖2‖x− y‖2
(28)
≤ L(G+ 2αR)‖x− y‖2.

(37)

Then, for any z′ ≤ z ∈ [T/L], it is not hard to verify that

‖x̄(z′)− x̄(z + 1)‖22
(36)
≤ 2

zLα+ 2h
(Fz(x̄(z′))− Fz(x̄(z + 1)))

=
2

zLα+ 2h

(
Fz′−1(x̄(z′))− Fz′−1(x̄(z + 1)) +

z∑
τ=z′

(`τ (x̄(z′))− `τ (x̄(z + 1)))

)
(32)
≤

2
∑z

τ=z′(`τ (x̄(z′))− `τ (x̄(z + 1)))

zLα+ 2h
(37)
≤ 2(z − z′ + 1)L(G+ 2αR)‖x̄(z′)− x̄(z + 1)‖2

zLα+ 2h

which implies that

‖x̄(z′)− x̄(z + 1)‖2 ≤
2(z − z′ + 1)L(G+ 2αR)

zLα+ 2h
. (38)

By combining (35) and (38), for any z = 2, . . . , T/L, we have

‖xi(z)− x̄(z + 1)‖2 ≤‖xi(z)− x̄(z − 1)‖2 + ‖x̄(z − 1)− x̄(z + 1)‖2

≤ 3L(G+ αR)

(z − 2)Lα+ 2h
+

4L(G+ 2αR)

zLα+ 2h
.

(39)

For z = 1, we notice that xi(1) = x̄(1) = 0, and it is easy to verify that

‖xi(z)− x̄(z + 1)‖2 = ‖x̄(z)− x̄(z + 1)‖2
(38)
≤ 2L(G+ 2αR)

zLα+ 2h
. (40)
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For brevity, let εz denote the upper bound of ‖xi(z)− x̄(z + 1)‖2 derived in (39) and (40).
For any z ∈ [T/L], t ∈ Tz , j ∈ [n], and x ∈ K, because of Assumptions 2 and 4, we have

ft,j(xi(z))− ft,j(x) ≤ft,j(xj(z))− ft,j(x) +G‖xj(z)− xi(z)‖2
≤〈∇ft,j(xj(z)),xj(z)− x〉 − α

2
‖xj(z)− x‖22

+G‖xj(z)− x̄(z + 1) + x̄(z + 1)− xi(z)‖2
≤〈∇ft,j(xj(z)), x̄(z + 1)− x〉 − α

2
‖xj(z)− x‖22

+ 〈∇ft,j(xj(z)),xj(z)− x̄(z + 1)〉+ 2Gεz

≤〈∇ft,j(xj(z)), x̄(z + 1)− x〉 − α

2
‖xj(z)− x‖22

+G‖xj(z)− x̄(z + 1)‖2 + 2Gεz

≤〈∇ft,j(xj(z)), x̄(z + 1)− x〉 − α

2
‖xj(z)− x‖22 + 3Gεz

(41)

where the third and last inequalities are due to (39) and (40). Moreover, for any x,y,y′, we have

‖y − x‖22 =‖y − y′‖22 + 2〈y,y′ − x〉+ ‖x‖22 − ‖y′‖22 ≥ 2〈y,y′ − x〉+ ‖x‖22 − ‖y′‖22. (42)

By combining (41) with (42), for any z ∈ [T/L], t ∈ Tz , j ∈ [n], and x ∈ K, we have

ft,j(xi(z))− ft,j(x)

≤〈∇ft,j(xj(z)), x̄(z + 1)− x〉 − α

2

(
2〈xj(z), x̄(z + 1)− x〉+ ‖x‖22 − ‖x̄(z + 1)‖22

)
+ 3Gεz

=〈∇ft,j(xj(z))− αxj(z), x̄(z + 1)− x〉+
α

2

(
‖x̄(z + 1)‖22 − ‖x‖22

)
+ 3Gεz.

Finally, from the above inequality and the definition of εz , for any x ∈ K, it is not hard to verify
that

T/L∑
z=1

∑
t∈Tz

n∑
j=1

ft,j(xi(z))−
T/L∑
z=1

∑
t∈Tz

n∑
j=1

ft,j(x)

≤
T/L∑
z=1

∑
t∈Tz

n∑
j=1

(
〈∇ft,j(xj(z))− αxj(z), x̄(z + 1)− x〉+

α

2

(
‖x̄(z + 1)‖22 − ‖x‖22

)
+ 3Gεz

)

=n

T/L∑
z=1

(
〈d̄(z), x̄(z + 1)− x〉+

Lα

2
(‖x̄(z + 1)‖22 − ‖x‖22)

)
+ 3nLG

T/L∑
z=1

εz

(33)
≤ nhR2 + 3nLG

T/L∑
z=2

3L(G+ αR)

(z − 2)Lα+ 2h
+

T/L∑
z=1

4L(G+ 2αR)

zLα+ 2h

 .

(43)

5.3 Proof of Corollaries 1 and 2

By substituting α = 0 and h =
√

11LTG/R into (15), we have

R(T, i) ≤3nLG

T/L∑
z=2

3LG

2h
+

T/L∑
z=1

2LG

h

+ nhR2 ≤ 11nLG2T

h
+ nhR2 = 2nGR

√
11LT
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which completes the proof of Corollary 1.
Similarly, by substituting h = αL into (15), we have

R(T, i) ≤3nLG

T/L∑
z=2

3(G+ αR)

zα
+

T/L∑
z=1

4(G+ 2αR)

(z + 2)α

+ nαLR2

≤3nLG(7G+ 11αR)

α

T/L∑
z=1

1

z
+ nαLR2

≤3nLG(7G+ 11αR)(1 + ln(T/L))

α
+ nαLR2

which completes the proof of Corollary 2.

5.4 Proof of Theorem 2

Recall that Wan et al. (2022) have established an Ω(nT/
√
C) lower bound by extending the classical

randomized lower bound for OCO (Abernethy et al., 2008) into D-OCO with limited communica-
tions. The main limitation of their analysis is that they ignore the topology of the graph G and
the spectral properties of the matrix P . To address this limitation, our main idea is to refine their
analysis by carefully choosing G and P .

Specifically, let A ∈ Rn×n denote the adjacency matrix of G, and let δi = |Ni| − 1 denote the
degree of node i. As presented in (8) of Duchi et al. (2011), for any connected undirected graph,
there exists a specific choice of the gossip matrix P satisfying Assumption 1, i.e.,

P = In −
1

δmax + 1
(D −A) (44)

where In is the identity matrix, δmax = max{δ1, . . . , δn}, and D = diag{δ1, . . . , δn}. Moreover,
Duchi et al. (2011) have discussed the connection of the spectral gap 1 − σ2(P ) and the network
size n for several classes of interesting networks. Here, we need to use the 1-connected cycle graph,
i.e., constructing the graph G by placing the n nodes on a circle and only connecting each node to
one neighbor on its right and left. We can derive the following lemma for the 1-connected cycle
graph.

Lemma 5 For the 1-connected cycle graph with n = 2(m+1), wherem denotes a positive integer,
the gossip matrix defined in (44) satisfies

π2

1− σ2(P )
≤ 4n2.

Then, we only need to derive a lower bound of Ω(n
√
nT/
√
C) since combining it with Lemma 5

will complete this proof. To this end, we set

ft,n−dm/2e+2(x) = · · · = ft,n(x) = ft,1(x) = ft,2(x) = · · · = ft,dm/2e(x) = 0

and carefully choose other local functions ft,dm/2e+1(x), . . . , ft,n−dm/2e+1(x).
Without loss of generality, we denote the set of communication rounds by C = {c1, . . . , cC},

where 1 ≤ c1 < · · · < cC < T . According to the topology of the 1-connected cycle graph, it
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is easy to verify that the learner 1 cannot receive the information generated by learners dm/2e +
1, . . . , n−dm/2e+ 1 at round t unless there exist dm/2e communication rounds since round t. Let
K = dm/2e, Z = bC/Kc, c0 = 0, and c(Z+1)K = T . The total T rounds can be divided into the
following Z + 1 intervals

[c0 + 1, cK ], [cK + 1, c2K ], . . . , [cZK + 1, c(Z+1)K ]. (45)

To maximize the impact of the communication and the topology on the regret of learner 1, for any
i ∈ {0, . . . , Z} and t ∈ [ciK + 1, c(i+1)K ], we will set ft,dm/2e+1(x) = · · · = ft,n−dm/2e+1(x) =
hi(x), which implies that the global loss function can be written as

ft(x) = (n− 2K + 1)hi(x). (46)

Moreover, according to the above discussion, the decisions x1(ciK + 1), . . . ,x1(c(i+1)K) for any
i ∈ {0, . . . , Z} are made before the function hi(x) can be revealed to learner 1. As a result, we can
use the classical randomized strategy to select hi(x) for any i ∈ {0, . . . , Z}, and derive an expected
lower bound for R(T, 1).

To be precise, we independently select hi(x) = 〈wi,x〉 for any i ∈ {0, . . . , Z}, where the
coordinates of wi are ±G/

√
d with probability 1/2 and hi(x) satisfies Assumption 2. It is not hard

to verify that

Ew0,...,wZ [R(T, 1)]

(46)
= Ew0,...,wZ

[
Z∑
i=0

c(i+1)K∑
t=ciK+1

(n− 2K + 1)hi(x1(t))−min
x∈K

Z∑
i=0

c(i+1)K∑
t=ciK+1

(n− 2K + 1)hi(x)

]

=(n− 2K + 1)Ew0,...,wZ

[
Z∑
i=0

c(i+1)K∑
t=ciK+1

〈wi,x1(t)〉 −min
x∈K

Z∑
i=0

(c(i+1)K − ciK)〈wi,x〉

]

=− (n− 2K + 1)Ew0,...,wZ

[
min
x∈K

Z∑
i=0

(c(i+1)K − ciK)〈wi,x〉

]

=− (n− 2K + 1)Ew0,...,wZ

 min
x∈{−R/

√
d,R/

√
d}d

〈
x,

Z∑
i=0

(c(i+1)K − ciK)wi

〉

(47)

where the third equality is due to Ew0,...,wZ [〈wi,x1(t)〉] = 0 for any t ∈ [ciK + 1, c(i+1)K ], and the
last equality is because a linear function is minimized at the vertices of the cube.

Then, let ε01, . . . , ε0d, . . . , εZ1, . . . , εZd be independent and identically distributed variables
with Pr(εij = ±1) = 1/2 for any i ∈ {0, . . . , Z} and j ∈ {1, . . . , d}. By combining these
notations with (47), we have

Ew0,...,wZ [R(T, 1)] =− (n− 2K + 1)Eε01,...,εZd

 d∑
j=1

− R√
d

∣∣∣∣∣
Z∑
i=0

(c(i+1)K − ciK)
εijG√
d

∣∣∣∣∣


=(n− 2K + 1)RGEε01,...,εZ1

[∣∣∣∣∣
Z∑
i=0

(c(i+1)K − ciK)εi1

∣∣∣∣∣
]
.

(48)
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Moreover, by combining (48) with the Khintchine inequality, we have

Ew0,...,wZ [R(T, 1)] ≥(n− 2K + 1)RG√
2

√√√√ Z∑
i=0

(c(i+1)K − ciK)2

≥(n− 2K + 1)RG√
2

√
(c(Z+1)K − c0)2

Z + 1
=

(n− 2K + 1)RGT√
2(Z + 1)

(49)

where the second inequality is due to the Cauchy-Schwarz inequality.
Note that the expected lower bound in (49) implies that for any D-OCO algorithm with commu-

nication rounds C = {c1, . . . , cC}, there exists a particular choice of w0, . . . ,wZ such that

R(T, 1) ≥(n− 2K + 1)RGT√
2(Z + 1)

≥ n
√

2nRGT

4
√

8C + n

where the last inequality is due to

n− 2K + 1√
Z + 1

=
n− 2dm/2e+ 1√
bC/dm/2ec+ 1

≥ n−m− 1√
C/dm/2e+ 1

=
(m+ 1)

√
m+ 1√

(C/dm/2e+ 1)(m+ 1)

≥(m+ 1)
√
m+ 1√

4C +m+ 1
=

n
√
n

2
√

8C + n
.

(50)

If n ≤ 8C + 16, by combining the above result on R(T, 1) with Lemma 5, we have

R(T, 1) ≥ n
√
πRGT

16(1− σ2(P ))1/4
√
C + 1

.

Otherwise, we have 8C < n− 16 < n, and thus R(T, 1) ≥ nRGT
4 .

5.5 Proof of Lemma 5

We start this proof by introducing a general lemma regarding the spectral gap of the communication
matrix P defined in (44).

Lemma 6 (Duchi et al., 2011, Lemma 4) Let δi denote the degree of each node i in a connected
undirected graph G. For the graph G, the matrix P defined in (44) satisfies

σ2(P ) ≤ max

{
1− δmin

δmax + 1
λn−1(L),

δmax

δmax + 1
λ1(L)− 1

}
where δmin = min{δ1, . . . , δn}, δmax = max{δ1, . . . , δn}, L denotes the normalized graph Lapla-
cian of G, and λi(L) denotes the i-th largest real eigenvalue of L.

As discussed in Duchi et al. (2011), L has the following eigenvalues{
1− cos

(
2πi

n

)∣∣∣∣ i = 1, . . . , n

}
for the 1-connected cycle graph.
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Then, because of n = 2(m+ 1), it is easy to verify that

λ1(L) = 1− cos

(
2(m+ 1)π

n

)
= 1− cos(π) = 2.

Moreover, because of n = 2(m+ 1) and cos(x) = cos(2π − x) for any x, we have

λn−1(L) = min

{
1− cos

(
2π

n

)
, 1− cos

(
2π(n− 1)

n

)}
= 1− cos

(
π

m+ 1

)
≥ π2

4(m+ 1)2
.

Since the 1-connected cycle graph also satisfies that δmax = δmin = 2, by using Lemma 6, we have

σ2(P ) ≤ max

{
1− 2

3
λn−1(L),

1

3

}
= 1− 2

3
λn−1(L) ≤ 1− π2

6(m+ 1)2

where the equality is due to λn−1(L) ≤ 1− cos(π/2) = 1.
Finally, it is easy to verify that

π2

1− σ2(P )
≤ 6(m+ 1)2 ≤ 4n2.

5.6 Proof of Theorem 3

The proof of Theorem 3 is similar to the proof of Theorem 2. The main modification is to make the
previous local functions α-strongly convex by adding a term α

2 ‖x‖
2
2.

To be precise, let K = dm/2e, Z = bC/Kc, c0 = 0, and c(Z+1)K = T . We still denote the set
of communication rounds by C = {c1, . . . , cC} where 1 ≤ c1 < · · · < cC < T , and divide the total
T rounds into Z + 1 intervals defined in (45). At each round t, we simply set

ft,n−dm/2e+2(x) = · · · = ft,n(x) = ft,1(x) = ft,2(x) = · · · = ft,dm/2e(x) =
α

2
‖x‖22

which satisfies Assumption 2 with G = 2αR and Assumption 4. Moreover, for any i ∈ {0, . . . , Z}
and t ∈ [ciK + 1, c(i+1)K ], we set

ft,dm/2e+1(x) = · · · = ft,n−dm/2e+1(x) = hi(x) = 〈wi,x〉+
α

2
‖x‖22

where the coordinates of wi are ±αR/
√
d with probability 1/2. It is easy to verify that hi(x) also

satisfies Assumption 2 withG = 2αR and Assumption 4. Following the proof of Theorem 2, we set
G as the 1-connected cycle graph, which ensures that the decisions x1(ciK + 1), . . . ,x1(c(i+1)K)
are independent of wi.

Then, let w̄ = 1
αT

∑Z
i=0(c(i+1)K − ciK)wi. The total loss for any x ∈ K equals to

T∑
t=1

ft(x) =

Z∑
i=0

(c(i+1)K − ciK)
(

(n− 2K + 1)〈wi,x〉+
αn

2
‖x‖22

)
=α(n− 2K + 1)T 〈w̄,x〉+

αnT

2
‖x‖22

=
αT

2

(∥∥∥∥√nx +
(n− 2K + 1)√

n
w̄

∥∥∥∥2
2

−
∥∥∥∥(n− 2K + 1)√

n
w̄

∥∥∥∥2
2

)
.

(51)
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According to the definition of wi, the absolute value of each element in −n−2K+1
n w̄ is bounded by

n− 2K + 1

nαT

Z∑
i=0

(c(i+1)K − ciK)αR
√
d

=
(n− 2K + 1)R

n
√
d

≤ R√
d

which implies that −n−2K+1
n w̄ belongs to K = [−R/

√
d,R/

√
d]d.

By further combining with (51), we have

argmin
x∈K

T∑
t=1

ft(x) = −n− 2K + 1

n
w̄ and min

x∈K

T∑
t=1

ft(x) = −αT
2

∥∥∥∥(n− 2K + 1)√
n

w̄

∥∥∥∥2
2

.

As a result, it is not hard to verify that

Ew0,...,wZ [R(T, 1)]

=Ew0,...,wZ

[
Z∑
i=0

c(i+1)K∑
t=ciK+1

(
(n− 2K + 1)〈wi,x1(t)〉+

αn

2
‖x1(t)‖22

)
+
αT

2

∥∥∥∥(n− 2K + 1)√
n

w̄

∥∥∥∥2
2

]

≥Ew0,...,wZ

[
Z∑
i=0

c(i+1)K∑
t=ciK+1

(n− 2K + 1)〈wi,x1(t)〉+
α(n− 2K + 1)2T

2n
‖w̄‖22

]

=Ew0,...,wZ

[
α(n− 2K + 1)2T

2n
‖w̄‖22

]
where the last equality is due to Ew0,...,wZ [〈wi,x1(t)〉] = 0 for any t ∈ [ciK + 1, c(i+1)K ].

Next, let ε01, . . . , ε0d, . . . , εZ1, . . . , εZd be independent and identically distributed variables with
Pr(εij = ±1) = 1/2 for any i ∈ {0, . . . , Z} and j ∈ {1, . . . , d}. By combining the definition of w̄
with the above inequality, we further have

Ew0,...,wZ [R(T, 1)] ≥(n− 2K + 1)2

2αnT
Ew0,...,wZ

∥∥∥∥∥
Z∑
i=0

(c(i+1)K − ciK)wi

∥∥∥∥∥
2

2


=

(n− 2K + 1)2

2αnT
Eε01,...,εZd

 d∑
j=1

∣∣∣∣∣
Z∑
i=0

(c(i+1)K − ciK)
εijαR√

d

∣∣∣∣∣
2


=
α(n− 2K + 1)2R2

2nT
Eε01,...,εZ1

∣∣∣∣∣
Z∑
i=0

(c(i+1)K − ciK)εi1

∣∣∣∣∣
2


=
α(n− 2K + 1)2R2

2nT

Z∑
i=0

(c(i+1)K − ciK)2 ≥ α(n− 2K + 1)2R2T

2n(Z + 1)

(52)

where the last inequality is due to the Cauchy-Schwarz inequality and (c(Z+1)K − c0)2 = T 2.
The expected lower bound in (52) implies that for any D-OCO algorithm with communication

rounds C = {c1, . . . , cC}, there exists a particular choice of w0, . . . ,wZ such that

R(T, 1) ≥ α(n− 2K + 1)2R2T

2n(Z + 1)

(50)
≥ αn2R2T

8(8C + n)
.
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If n ≤ 8C + 16, according to Lemma 5, by using the gossip matrix P defined in (44), we have

R(T, 1) ≥ απnR2T

256(C + 1)
√

1− σ2(P )
.

Otherwise, we have 8C < n− 16 < n, and thus R(T, 1) ≥ αnR2T
16 .

5.7 Proof of Theorem 4

Compared with the proof of Theorem 3, the main difference of this proof is to focus on the case with
C = T − 1 and redefine the loss functions as well as the decision set. Specifically, for any D-OCO
algorithm, we still denote the sequence of decisions made by the local learner 1 as x1(1), . . . ,x1(T ),
but divide the total T rounds into the following Z + 1 intervals

[c0 + 1, c1], [c1 + 1, c2], . . . , [cZ + 1, cZ+1] (53)

where Z = b(T − 1)/Kc, K = dm/2e, cZ+1 = T , and ci = iK for i = 0, . . . , Z. At each round
t, we first simply set

ft,n−dm/2e+2(x) = · · · = ft,n(x) = ft,1(x) = ft,2(x) = · · · = ft,dm/2e(x) =
α

2
‖x‖22

which is α-strongly convex and satisfies Assumption 2 with G = αR over the set K = [0, R/
√
d]d.

Then, let Bp denote the Bernoulli distribution with probability of obtaining 1 equal to p, and let 1
denote the all-ones vector in Rd. For any i ∈ {0, . . . , Z} and t ∈ [ci + 1, ci+1], we set

ft,dm/2e+1(x) = · · · = ft,n−dm/2e+1(x) = hi(x) =
α

2

∥∥∥∥x− Rwi√
d

∥∥∥∥2
2

where wi is sampled from the vector set {0,1} according to Bp, i.e., Pr(wi = 1) = p. It is easy to
verify that hi(x) also satisfies the definition of α-strongly convex functions and Assumption 2 with
G = αR over the set K = [0, R/

√
d]d. Then, for any i ∈ {0, . . . , Z} and t ∈ [ci + 1, ci+1], the

global loss function in each round can be written as

ft(x) =

n∑
j=1

ft,j(x) =
α(n− 2K + 1)

2

∥∥∥∥x− Rwi√
d

∥∥∥∥2
2

+
α(2K − 1)

2
‖x‖22

=
αn

2
‖x‖22 −

α(n− 2K + 1)R√
d

〈x,wi〉+
α(n− 2K + 1)R2

2d
‖wi‖22

whose expectation is

Ewi [ft(x)] =
αn

2
‖x‖22 −

α(n− 2K + 1)R√
d

〈x,p〉+
α(n− 2K + 1)R2

2d
〈1,p〉

=
αn

2

∥∥∥∥x− (n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

+
α(n− 2K + 1)R2

2d

〈
1− (n− 2K + 1)p

n
,p

〉
where p denotes the vector with the same value of p in each dimension. For brevity, let F (x) =
Ewi [ft(x)]. Because of p ∈ [0, 1] and K = [0, R/

√
d]d, this function can be simply minimized by

x∗ =
(n− 2K + 1)Rp

n
√
d

∈ K
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which implies that any x ∈ K has

F (x)− F (x∗) =
αn

2

∥∥∥∥x− (n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

≥ 0. (54)

Moreover, it is not hard to verify that

Ew0,...,wZ

[
min
x∈K

Z∑
i=0

ci+1∑
t=ci+1

ft(x)

]
≤ Ew0,...,wZ

[
Z∑
i=0

ci+1∑
t=ci+1

ft(x
∗)

]
=

Z∑
i=0

ci+1∑
t=ci+1

F (x∗). (55)

Following the proof of Theorem 3, we continue to set G as the 1-connected cycle graph, which
ensures that the decisions x1(ci + 1), . . . ,x1(ci+1) are independent of wi. Therefore, we have

Ew0,...,wZ [R(T, 1)] =Ew0,...,wZ

[
Z∑
i=0

ci+1∑
t=ci+1

ft(x1(t))−min
x∈K

Z∑
i=0

ci+1∑
t=ci+1

ft(x)

]

=Ew0,...,wZ

[
Z∑
i=0

ci+1∑
t=ci+1

F (x1(t))

]
− Ew0,...,wZ

[
min
x∈K

Z∑
i=0

ci+1∑
t=ci+1

ft(x)

]
(55)
≥ Ew0,...,wZ

[
Z∑
i=0

ci+1∑
t=ci+1

F (x1(t))−
Z∑
i=0

ci+1∑
t=ci+1

F (x∗)

]
.

(56)

To lower bound the right side of (56), we assume that the D-OCO algorithm is deterministic without
loss of generality.3 Note that all local functions {ft,1(x), . . . , ft,n(x)} for any t ∈ [ci + 1, ci+1]
are either deterministic or parameterized by the same random vector wi drawn according to Bp.
Therefore, for any t ∈ [ci + 1, ci+1], x1(t) actually can be specified by a bit string X ∈ {0, 1}i
drawn from Bip, i.e., the product measure on {0, 1}i induced by taking i independent trials from
Bp. To be precise, the local learner 1 of the D-OCO algorithm at any round t ∈ [ci + 1, ci+1] can
be denoted as a mapping function At(·) : {0, 1}i 7→ K such that x1(t) = At(X). Moreover, one
should notice that the value p in the above procedures can be replaced by another value p′, and the
corresponding random vectors can be rewritten as w′0, . . . ,w

′
Z and x′1(1), . . . ,x′1(T ). Similarly,

x′1(t) for any round t ∈ [ci + 1, ci+1] can be specified by a bit string X ′ ∈ {0, 1}i drawn from
Bip′ , i.e., x′1(t) = At(X ′). Interestingly, following Hazan and Kale (2014), we can show that
the expected instantaneous regret of the local learner 1 on at least one of the two distributions
parameterized by appropriate p and p′ must be large.

Lemma 7 Fix an interval i and let ε ≤ 1
32
√
i+1

be a parameter. Assume that p, p′ ∈
[
1
4 ,

3
4

]
such

that 2ε ≤ |p− p′| ≤ 4ε. Following the above notations, for any t ∈ [ci + 1, ci+1], we have

EX
[
‖At(X)− ξp‖22

]
+ EX′

[∥∥At(X ′)− ξp′∥∥22] ≥ d(ξε)2

4

where ξ = (n − 2K + 1)R/(n
√
d) and p′ denotes the vector with the same value of p′ in each

dimension.

3. As in the lower bound analysis of Hazan and Kale (2014), even if the algorithm is randomized, it can be viewed as a
deterministic one by fixing its random seed.
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Let M = blog16(15Z + 16)− 1c, and it is not hard to verify that M ≥ 1 due to 16n + 1 ≤ T .
To exploit the above lemma, we further divide the first Z ′ = 1

15(16M+1 − 16) < Z + 1 intervals
into M epochs with the length 16, 162, . . . , 16M . More specifically, the m-th epoch Em consists of
the intervals 1

15(16m − 16), . . . , 1
15(16m+1 − 16)− 1. Then, for these M epochs, we can prove the

following lemma based on Lemma 7.

Lemma 8 Following the notations used in Lemma 7, there exists a collection of nested intervals,[
1
4 ,

3
4

]
⊇ I1 ⊇ I2 ⊇ · · · ⊇ IM , such that interval Im corresponds to epoch m, with the property

that Im has length 4−(m+3), and for every p ∈ Im, we have

EX
[
‖At(X)− ξp‖22

]
≥ 16−(m+3)dξ2

8

over at least half the rounds t in intervals of epoch m.

From Lemma 8, there exists a value of p ∈ ∩m∈[M ]Im such that

Ew0,...,wZ [R(T, 1)] ≥Ew0,...,wZ

[
Z∑
i=0

ci+1∑
t=ci+1

αn

2

∥∥∥∥x1(t)−
(n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

]

≥Ew0,...,wZ

[
Z′−1∑
i=0

ci+1∑
t=ci+1

αn

2

∥∥∥∥x1(t)−
(n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

]

=Ew0,...,wZ

[
M∑
m=1

∑
i∈Em

ci+1∑
t=ci+1

αn

2

∥∥∥∥x1(t)−
(n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

]

=

M∑
m=1

∑
i∈Em

ci+1∑
t=ci+1

EX

[
αn

2

∥∥∥∥At(X)− (n− 2K + 1)Rp

n
√
d

∥∥∥∥2
2

]

≥
M∑
m=1

(
c 1
15

(16m+1−16) − c 1
15

(16m−16)

)
16−(m+3)α(n− 2K + 1)2R2

32n

=

M∑
m=1

16−4αK(n− 2K + 1)2R2

2n
=

16−4αMK(n− 2K + 1)2R2

2n

(57)

where the first inequality is due to (54) and (56), and the third equality is due to ci = iK for any
i ≤ Z. Moreover, because of the definitions of M,Z,K, we have

MK(n− 2K + 1)2

2n
≥(log16(15Z + 16)− 2)m(n−m− 1)2

4n

=
(log16(15b(T − 1)/Kc+ 16)− 2)(n− 2)n

32

≥(log16(30(T − 1)/n)− 2)(n− 2)n

32
.

(58)

By combining (57) and (58) with Lemma 5, there exists a particular choice of w0, . . . ,wZ such that

R(T, 1) ≥16−5απ(log16(30(T − 1)/n)− 2)(n− 2)R2

4
√

1− σ2(P )
(59)
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which completes the proof.
Additionally, we notice that it is also appealing to extend the lower bound in (59) into the setting

with only C communication rounds. Following the proof of Theorem 3, a natural idea is to divide
the total T rounds into Z + 1 intervals defined in (45), rather than (53), and then repeat the proof
steps outlined above. However, we want to emphasize that the last two equalities in (57) require the
number of rounds in the first Z ′ intervals to be the same, which is not necessarily satisfied by (45).
This is because the algorithm can allocate their C communication rounds arbitrarily. Therefore,
instead of simply using this natural idea, new analytical tools may be required for the extension,
which will be investigated in the future.

5.8 Proof of Lemma 7

This proof is heavily inspired by the proof of Lemma 16 in Hazan and Kale (2014), but requires spe-
cific modifications to generalize their result from one dimension to high dimensions. Specifically,
we suppose that there exists an integer j such that

EX
[
(At,j(X)− ξp)2

]
+ EX′

[(
At,j(X ′)− ξp′

)2]
<

(ξε)2

4
(60)

where At,j(X) denotes the j-th element in the vector At(X). In the following, we will complete
the proof by contradiction.

We first consider the case with p′ ≥ p + 2ε. Let Prp[·] and Prp′ [·] denote the probability of an
event under the distribution Bip and Bip′ , respectively. By combining (60) with Markov’s inequality,
we have

Pr
p

[
(At,j(X)− ξp)2 < (ξε)2

]
≥ 3/4

which implies that
Pr
p

[At,j(X) < ξ(p+ ε)] ≥ 3/4. (61)

Similarly, we can show that

Pr
p′

[
At,j(X ′) > ξ(p+ ε)

]
≥ Pr

p′

[
At,j(X ′) > ξ(p′ − ε)

]
≥ 3/4 (62)

where the first inequality is due to p′ ≥ p+ 2ε.
Now, we define an event

E =
{
Y ∈ {0, 1}i : At,j(Y ) > ξ(p+ ε)

}
.

It is easy to verify that ∣∣∣∣Pr
p

[E ]− Pr
p′

[E ]

∣∣∣∣ = Pr
p′

[E ]− Pr
p

[E ] >
1

2
(63)

where both the equality and inequality are due to Prp[E ] < 1/4 derived from (61) and Prp′ [E ] ≥ 3/4
derived from (62).

Moreover, let ∆TV(Bip,Bip′) denote the total variation distance between the two distributions Bip
and Bip′ on the same probability space, i.e.,

∆TV(Bip,Bip′) = sup
E

∣∣∣∣Pr
p

[E ]− Pr
p′

[E ]

∣∣∣∣ .
Note that Hazan and Kale (2014) have provided an upper bound on ∆TV(Bip,Bip′).
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Lemma 9 (Hazan and Kale, 2014, Lemma 15) Let p, p′ ∈
[
1
4 ,

3
4

]
such that |p′ − p| ≤ 1/8. Then, it

holds that
∆TV(Bip,Bip′) ≤ 2

√
(p′ − p)2i

for any integer i ≥ 0.4

Recall that |p− p′| ≤ 4ε ≤ 1/8. Then, from Lemma 9, we have∣∣∣∣Pr
p

[E ]− Pr
p′

[E ]

∣∣∣∣ ≤ ∆TV(Bip,Bip′) ≤ 2
√

(p′ − p)2i ≤ 2
√

16ε2i ≤ 1

4

which contradicts (63), and thus implies that our assumption about (60) is unavailable. Additionally,
it is easy to construct the same contradiction in the case with p ≥ p′ + 2ε. Therefore, we have

EX
[
(At,j(X)− ξp)2

]
+ EX′

[(
At,j(X ′)− ξp′

)2] ≥ (ξε)2

4
(64)

for any j ∈ [d]. Finally, by summing both sides of (64) over j ∈ [d], we complete this proof.

5.9 Proof of Lemma 8

This lemma can be proved by slightly modifying the proof of Lemma 19 in Hazan and Kale (2014).
Here, we include the detailed proof for the completeness. Following Hazan and Kale (2014), we
will iteratively build the required interval Im for m = 1, . . . ,M . Specifically, we first select an
arbitrary interval I0 =

[
a, a+ 4−4

]
of length 4−3 inside

[
1
4 ,

3
4

]
. To find the required interval for

m = 1, we divide Im−1 into four equal quarters of length 4−(m+3), and show that either the first
quarter Q1 =

[
a, a+ 4−(m+3)

]
or the last quarter Q4 =

[
a+ 3 · 4−(m+3), a+ 4 · 4−(m+3)

]
is a

valid choice for Im.
To this end, we suppose that Q1 is not a valid choice for Im, i.e., there exist some p ∈ Q1 such

that it holds

EX
[
‖At(X)− ξp‖22

]
<

16−(m+3)dξ2

8

for more than half the rounds t in intervals of epoch m. Then, we define the following set

H =
⋃
i∈Em

{
t ∈ [ci + 1, ci+1] : EX

[
‖At(X)− ξp‖22

]
<

16−(m+3)dξ2

8

}
(65)

where Em =
{

1
15(16m − 16), . . . , 1

15(16m+1 − 16)− 1
}

. In the following, we proceed to prove
that for all p′ ∈ Q4 and t ∈ H , the following inequality must hold

EX′
[∥∥At(X ′)− ξp′∥∥22] ≥ 16−(m+3)dξ2

8
(66)

which implies that Q4 is a valid choice for Im because the set H contains more than half the rounds
in intervals of epoch m.

To be precise, we fix any p′ ∈ Q4 and t ∈ H , where t must belong to [ci + 1, ci+1] for some
i ∈ Em. Let ε = 4−(m+3). It is easy to verify that 4(i + 1) ≤ 16m+1 due to the definition of Em,

4. Following the errata of Hazan and Kale (2014), we have used the correct constant 2 in the upper bound.
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and we thus have ε ≤ 1/(32
√
i+ 1). Additionally, we have 2ε ≤ |p− p′| ≤ 4ε due to p ∈ Q1 and

p′ ∈ Q4. Therefore, from Lemma 7, we have

EX
[
‖At(X)− ξp‖22

]
+ EX′

[∥∥At(X ′)− ξp′∥∥22] ≥ 16−(m+3)dξ2

4
. (67)

Then, the previously mentioned (66) can be simply derived by combining (65) and (67). Finally,
it is worth noting that for any m = 2, . . . ,M , the required interval Im can be built one by one by
starting the division from the valid Im−1 and repeating the above procedures.

5.10 Proof of Theorem 5

Following the definitions of x̄(z), z̄(z), d̄(z), and `z(x) in the proof of Theorem 1, we only need to
analyze the distance ‖xi(z)− x̄(z + 1)‖2. To this end, we first define

x∗i (z) = argmin
x∈K

〈x, zi(z − 1)〉+
(z − 2)Lα

2
‖x‖22 + h‖x‖22.

for any z = 2, . . . , T/L, which is exactly the same as xi(z) generated by Algorithm 1. Note that
the distance ‖x∗i (z)− x̄(z+1)‖2 has been analyzed in the proof of Theorem 1. However, due to the
use of CG, xi(z) generated by Algorithm 3 is only an approximation of x∗i (z). Moreover, according
to Algorithm 3, now xi(z) is computed based on zi(z − 2), rather than zi(z − 1). As a result, we
first upper bound ‖xi(z)− x̄(z + 1)‖2 as

‖xi(z)− x̄(z + 1)‖2 ≤‖xi(z)− x∗i (z − 1)‖2 + ‖x∗i (z − 1)− x̄(z + 1)‖2
≤‖xi(z)− x∗i (z − 1)‖2 + ‖x∗i (z − 1)− x̄(z)‖2

+ ‖x̄(z)− x̄(z + 1)‖2
(68)

for any z = 3, . . . , T/L.
To bound the first term in the right side of (68), we introduce the following lemma regarding the

convergence property of CG.

Lemma 10 (Jaggi, 2013, Theorem 1) If F (x) : K 7→ R is a convex and β-smooth function, and
‖x‖2 ≤ R for any x ∈ K, Algorithm 2 with K ≥ 1 ensures

F (xout)− F (x∗) ≤ 8βR2

L+ 2

where x∗ ∈ argminx∈K F (x).

It is easy to verify that Fz−1,i(x) defined in Algorithm 3 is ((z − 3)Lα+ 2h)-strongly convex and
((z−3)Lα+2h)-smooth overK, for any z = 3, . . . , T/L. Moreover, due to the above definition, we
have x∗i (z−1) = argminx∈K Fz−1,i(x). Then, because of xi(z) = CG(K, L, Fz−1,i(x),xi(z−1))
and Lemma 10, for any z = 3, . . . , T/L, we have

Fz−1,i(xi(z))− Fz−1,i(x∗i (z − 1)) ≤ 8((z − 3)Lα+ 2h)R2

L+ 2
. (69)

By combining (36) with (69), for any z = 3, . . . , T/L, we further have

‖xi(z)− x∗i (z − 1)‖2 ≤

√
2 (Fz−1,i(xi(z))− Fz−1,i(x∗i (z − 1)))

(z − 3)Lα+ 2h
≤ 4R√

L+ 2
. (70)
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Then, to bound the second term in the right side of (68), we recall that θ and L′ used in Algorithm
3 equal to θ and L used in Algorithm 1, respectively. Following the proof of Lemma 2, it is easy to
verify that that Algorithm 3 also enjoys the error bound presented in Lemma 2, i.e.,

‖zi(z)− z̄(z)‖2 ≤ 3L(G+ αR)

for any i ∈ [n] and z ∈ [T/L], though L in Algorithm 3 is different from L′. Therefore, we can
directly use (39) in the proof of Theorem 1 to derive the following upper bound

‖x∗i (z − 1)− x̄(z)‖2 ≤
3L(G+ αR)

(z − 3)Lα+ 2h
+

4L(G+ 2αR)

(z − 1)Lα+ 2h
. (71)

for any z = 3, . . . , T/L. Moreover, it is not hard to verify that the third term in the right side of
(68) can be bounded by (38) in the proof of Theorem 1.

Substituting (70), (71), and (38) into (68), for any z = 3, . . . , T/L, we have

‖xi(z)− x̄(z + 1)‖2

≤ 4R√
L+ 2

+
3L(G+ αR)

(z − 3)Lα+ 2h
+

4L(G+ 2αR)

(z − 1)Lα+ 2h
+

2L(G+ 2αR)

zLα+ 2h

≤ 4R√
L+ 2

+
3L(G+ αR)

(z − 3)Lα+ 2h
+

6L(G+ 2αR)

(z − 1)Lα+ 2h
.

Moreover, because of xi(1) = xi(2) = x̄(1) = 0, it is easy to verify that

‖xi(z)− x̄(z + 1)‖2 = ‖x̄(z)− x̄(z + 1)‖2
(38)
≤ 2L(G+ 2αR)

zLα+ 2h

for z = 1, and

‖xi(z)− x̄(z + 1)‖2 = ‖x̄(z − 1)− x̄(z + 1)‖2
(38)
≤ 4L(G+ 2αR)

zLα+ 2h
.

for z = 2. Finally, following (43) in the proof of Theorem 1, for any x ∈ K, it is easy to verify that

T/L∑
z=1

∑
t∈Tz

n∑
j=1

ft,j(xi(z))−
T/L∑
z=1

∑
t∈Tz

n∑
j=1

ft,j(x)

≤nhR2 +
12nGRT√
L+ 2

+ 3nLG

T/L∑
z=3

3L(G+ αR)

(z − 3)Lα+ 2h
+

T/L∑
z=1

6L(G+ 2αR)

(z − 1)Lα+ 2h

 .

5.11 Proof of Corollaries 3 and 4

By substituting α = 0 into (17), we have

R(T, i) ≤3nLG

T/L∑
z=3

3LG

2h
+

T/L∑
z=1

3LG

h

+ nhR2 +
12nGRT√
L+ 2

≤14nLG2T

h
+ nhR2 +

12nGRT√
L+ 2

.

(72)
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Then, by substituting h =
√

14LTG/R and L =
√
TL′ into (72), we have

R(T, i) ≤2
√

14nGR
√
L′T 3/4 +

12nGRT 3/4

√
L′

. (73)

If L′ ≤
√
T , by substituting h =

√
14LTG/R and L =

√
T into (72), we have

R(T, i) ≤(2
√

14 + 12)nGRT 3/4. (74)

From (73) and (74), the proof of Corollary 3 is completed.
To prove Corollary 4, we first substitute h = αL into (17) to derive the following regret bound

R(T, i) ≤3nLG

T/L∑
z=3

3(G+ αR)

(z − 1)α
+

T/L∑
z=1

6(G+ 2αR)

(z + 1)α

+ nαLR2 +
12nGRT√
L+ 2

≤3nLG(9G+ 15αR)

α

T/L∑
z=1

1

z
+ nαLR2 +

12nGRT√
L+ 2

≤3nLG(9G+ 15αR)(1 + ln(T/L))

α
+ nαLR2 +

12nGRT√
L+ 2

.

(75)

Then, by substituting L = T 2/3(lnT )−2/3L′ into (75), we have

R(T, i) ≤3nG(9G+ 15αR)T 2/3L′((lnT )−2/3 + (lnT )1/3)

α

+ nαT 2/3L′R2(lnT )−2/3 +
12nGRT 2/3(lnT )1/3√

L′
.

(76)

Moreover, if L′ ≤ T 2/3(lnT )−2/3, by substituting L = T 2/3(lnT )−2/3 into (75), we have

R(T, i) ≤3nG(9G+ 15αR)T 2/3((lnT )−2/3 + (lnT )1/3)

α

+ nαT 2/3R2(lnT )−2/3 + 12nGRT 2/3(lnT )1/3.

(77)

From (76) and (77), the proof of Corollary 4 is completed.

6. Conclusion

This paper investigates D-OCO with convex and strongly convex functions, and aims to develop op-
timal and efficient algorithms. To this end, we first propose a novel D-OCO algorithm, namely AD-
FTGL, which reduces the existing O(n5/4ρ−1/2

√
T ) and O(n3/2ρ−1 log T ) regret bounds for con-

vex and strongly convex functions to Õ(nρ−1/4
√
T ) and Õ(nρ−1/2 log T ), respectively. Further-

more, we demonstrate its optimality for D-OCO by deriving Ω(nρ−1/4
√
T ) and Ω(nρ−1/2 log T )

lower bounds for convex and strongly convex functions, respectively. Finally, to efficiently han-
dle complex constraints, we propose a projection-free variant of AD-FTGL, which can respectively
achieve O(nT 3/4) and O(nT 2/3(log T )1/3) regret bounds for convex and strongly convex func-
tions with only Õ(ρ−1/2

√
T ) and Õ(ρ−1/2T 1/3(log T )2/3) communication rounds. Although these

regret bounds cannot match the aforementioned lower bounds, they are much tighter than those of
existing projection-free algorithms for D-OCO. Moreover, we provide communication-dependent
lower bounds to demonstrate that the number of communication rounds required by our projection-
free algorithm is nearly optimal for achieving these regret bounds.
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Appendix A. Revisiting D-FTGL

Wan et al. (2022) originally develop a projection-free version of D-FTGL for α-strongly convex
functions, which also adopts the blocking update mechanism to select the decision of each learner.
In this section, we first discuss how to simplify the projection-free version into D-FTGL, and then
provide a refined analysis of its regret.

A.1 The Algorithm

Following the notations in our Algorithm 1, at the end of each block z = 1, . . . , T/L, each learner
i of their algorithm updates as

zi(z + 1) =
∑
j∈Ni

Pijzj(z) + di(z)

xi(z + 1) = CG(K,K, Fz,i(x),xi(z))

(78)

where Fz,i(x) = 〈zi(z),x〉 + (z−1)Lα
2 ‖x‖22 + h‖x‖22, and xi(z + 1) is computed by using CG

(Frank and Wolfe, 1956; Jaggi, 2013) with the initialization xi(z) and K iterations to minimize the
function Fz,i(x) over the decision set K.

According to Theorem 2 of Wan et al. (2022), under Assumptions 1, 2, 3, and 4, their algorithm
can achieve the following regret bound

R(T, i) ≤ 12nGRT√
K + 2

+

T/L∑
z=2

3nGL2(G+ αR)
√
n

((z − 2)αL+ 2h)(1− σ2(P ))
+

T/L∑
z=1

4nL2(G+ 2αR)2

zαL+ 2h
+ 4nhR2.

(79)
By substituting K = L =

√
T , α = 0, and h = n1/4T 3/4G/(

√
ρR) into (79), they derive a

regret bound of O(n5/4ρ−1/2T 3/4) for convex functions. Moreover, by substituting K = L =
T 2/3(lnT )−2/3 and h = αL into (79), they derive a regret bound of O(n3/2ρ−1T 2/3(log T )1/3) for
strongly convex functions.

However, these choices of K and L are used for achieving the projection-free property, i.e.,
only one linear optimization step is used per round on average. Actually, it is easy to derive
the O(n5/4ρ−1/2

√
T ) regret bound for convex functions by substituting K = ∞, L = 1, and

h = n1/4
√
TG/(

√
ρR), and the O(n3/2ρ−1 log T ) regret bound for strongly convex functions by

substituting K = ∞, L = 1, and h = α into (79). With the new choice of K and L, the algorithm
of Wan et al. (2022) reduces to performing the following update

zi(t+ 1) =
∑
j∈Ni

Pijzj(t) + (∇ft,i(xi(t))− αxi(t))

xi(t+ 1) = argmin
x∈K

〈zi(t),x〉+
(t− 1)α

2
‖x‖22 + h‖x‖22

(80)
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Algorithm 4 D-FTGL
1: Input: α, h
2: Initialization: set xi(1) = zi(1) = 0, ∀i ∈ [n]
3: for t = 1, . . . , T do
4: for each local learner i ∈ [n] do
5: Play xi(t) and query∇ft,i(xi(t))
6: Set zi(t+ 1) =

∑
j∈Ni Pijzj(t) + (∇ft,i(xi(t))− αxi(t))

7: Compute xi(z + 1) = argminx∈K 〈zi(t+ 1),x〉+ tα
2 ‖x‖

2
2 + h‖x‖22

8: end for
9: end for

for each learner i at round t. Additionally, it is worth noting that the main reason for computing
xi(z + 1) in (78) based on zi(z) is to allocate K iterations of CG to every round in block z, rather
than only the last round in the block. In contrast, here computing xi(t+ 1) based on zi(t) provides
no benefit because of L = 1. Thus, (80) can be further simplified to D-FTGL, as given in (5). For
the sake of completeness, we summarize the detailed procedure in Algorithm 4.

A.2 Theoretical Guarantees

Although D-FTGL is slightly different from (80), it is easy to verify that D-FTGL can also achieve
the aforementioned regret bounds for convex and strongly convex functions. To be precise, we first
establish the following guarantee for D-FTGL.

Theorem 6 Let C denote an upper bound of the approximate error of the standard gossip step in
Algorithm 4, i.e., ‖zi(t) − z̄(t)‖2 ≤ C for any t ∈ [T ] and i ∈ [n], where z̄(t) = 1

n

∑n
i=1 zi(t).

Under Assumptions 1, 2, 3, and 4, for any i ∈ [n], Algorithm 4 ensures

R(T, i) ≤ 3nG

(
T∑
t=2

C

(t− 1)α+ 2h
+

T∑
t=1

2(G+ 2αR)

tα+ 2h

)
+ nhR2. (81)

Note that Lemma 3 of Wan et al. (2022) has provided an error bound of C =
√
n(G+ αR)ρ−1 for

the standard gossip step. By substituting this bound into (81), we can set h = n1/4
√
TG/(

√
ρR)

and α = 0 to achieve theO(n5/4ρ−1/2
√
T ) regret bound for convex functions, and simply set h = 0

to achieve the O(n3/2ρ−1 log T ) regret bound for strongly convex functions.
More importantly, we want to emphasize that the power of D-FTGL extends beyond recovering

existing results. In the following, we provide a novel and improved error bound for the standard
gossip step in D-FTGL, and further derive tighter regret bounds.

Lemma 11 For any i ∈ [n], let ∇i(1), . . . ,∇i(T ) ∈ Rd be a sequence of vectors. Let zi(1) = 0,
zi(t + 1) =

∑
j∈Ni Pijzj(t) +∇i(t), and z̄(t) = 1

n

∑n
i=1 zi(t) for any t ∈ [T ], where P satisfies

Assumption 1. For any i ∈ [n] and t ∈ [T ], assuming ‖∇i(t)‖2 ≤ ξ where ξ > 0 is a constant, we
have

‖zi(t)− z̄(t)‖2 ≤ 2ξ

(
1 + ln(

√
n)

1− σ2(P )
+ 1

)
.

This lemma is inspired by an existing error bound ofO(ρ−1 log(nT )) for the standard gossip step in
decentralized offline optimization (Duchi et al., 2011). However, possibly because of the additional

35



WAN, WEI, XUE, SONG, AND ZHANG

dependence on log T , it is overlooked in D-OCO, where T could be very large and even the log T
factor is unacceptable. In contrast, Lemma 11 provides an O(ρ−1 log n) error bound without the
log T factor. Moreover, compared with the O(

√
nρ−1) error bound in previous studies on D-OCO

(Hosseini et al., 2013; Wan et al., 2022), our error bound has a much tighter dependence on n. Then,
by substituting C = O(ρ−1 log n), h = G

√
T lnn/(

√
ρR), and α = 0 into (81), we can achieve an

O(nρ−1/2
√
T log n) regret bound for convex functions. Recall that D-FTGL with α = 0 reduces

to D-FTRL (Hosseini et al., 2013). Here, the improved error bound allows us to tune the parameter
h better, and thus improve the existing O(n5/4ρ−1/2

√
T ) regret bound. If functions are strongly

convex, we can substituteC = O(ρ−1 log n) and h = 0 into (81) to derive anO(nρ−1(log n) log T )
regret bound, which is also tighter than the existing bound.

Remark 4 It is worth noting that besides D-FTGL, other existing D-OCO algorithms with a similar
use of the standard gossip step can also benefit from our improved error bound in Lemma 11. For ex-
ample, it is easy to verify that theO(n5/4ρ−1/2T 3/4) andO(n3/2ρ−1T 2/3(log T )1/3) regret bounds
of the projection-free algorithm in Wan et al. (2022) can be reduced to O(nρ−1/2T 3/4

√
log n) and

O(nρ−1T 2/3(log T )1/3 log n), respectively.

A.3 Analysis

In the following, we provide the detailed proofs of Theorem 6 and Lemma 11.

A.3.1 PROOF OF THEOREM 6

We start this proof by defining a virtual decision for any t ∈ [T + 1] as

x̄(t) = argmin
x∈K

〈x, z̄(t)〉+
(t− 1)α

2
‖x‖22 + h‖x‖22. (82)

For brevity, let di(t) = ∇ft,i(xi(t))− αxi(t) and d̄(t) = 1
n

∑n
i=1 di(t). In the following, we will

bound the regret of any learner i by analyzing the regret of x̄(2), . . . , x̄(T + 1) on a sequence of
loss functions defined by d̄(1), . . . , d̄(T ) and the distance ‖xi(t)− x̄(t+ 1)‖2 for any t ∈ [T ]. To
this end, we notice that

z̄(t+ 1) =
1

n

n∑
i=1

zi(t+ 1) =
1

n

n∑
i=1

∑
j∈Ni

Pijzj(t) + di(t)


=

1

n

n∑
i=1

n∑
j=1

Pijzj(t) + d̄(t) =
1

n

n∑
j=1

n∑
i=1

Pijzj(t) + d̄(t)

=z̄(t) + d̄(t) =
t∑
i=1

d̄(i)

(83)

where the third and fifth equalities are due to Assumption 1.
Then, let `t(x) = 〈x, d̄(t)〉 + α

2 ‖x‖
2
2 for any t ∈ [T ]. By combining Lemma 3 with (82) and

(83), for any x ∈ K, it is easy to verify that

T∑
t=1

`t(x̄(t+ 1))−
T∑
t=1

`t(x) ≤ h
(
‖x‖22 − ‖x̄(2)‖22

)
≤ hR2 (84)
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where the last inequality is due to Assumption 3 and ‖x̄(2)‖22 ≥ 0.
We also notice that for any t ∈ [T ], Algorithm 4 ensures

xi(t) = argmin
x∈K

〈x, zi(t)〉+
(t− 1)α

2
‖x‖22 + h‖x‖22. (85)

By combining Lemma 4 with (82) and (85), for any t ∈ [T ], we have

‖xi(t)− x̄(t)‖2 ≤
‖zi(t)− z̄(t)‖2
(t− 1)α+ 2h

≤ C

(t− 1)α+ 2h
(86)

where the last inequality is due to the definition of C.
To bound ‖xi(t) − x̄(t + 1)‖2, we still need to analyze the term ‖x̄(t) − x̄(t + 1)‖2 for any

t ∈ [T ]. Let Ft(x) =
∑t

τ=1 `τ (x) + h‖x‖22 for any t ∈ [T ]. It is easy to verify that Ft(x) is
(tα+ 2h)-strongly convex over K, and x̄(t+ 1) = argminx∈K Ft(x). Moreover, for any x,y ∈ K,
we have

|`t(x)− `t(y)| ≤ |〈∇`t(x),x− y〉| ≤ ‖∇`t(x)‖2‖x− y‖2

=‖d̄(t) + αx‖2‖x− y‖2 ≤

(∥∥∥∥∥ 1

n

n∑
i=1

di(t)

∥∥∥∥∥
2

+ ‖αx‖2

)
‖x− y‖2

≤(G+ 2αR)‖x− y‖2.

By combining the strong convexity of Ft(x) with the above inequality, for any t ∈ [T ], we have

‖x̄(t)− x̄(t+ 1)‖22
(36)
≤ 2

tα+ 2h
(Ft(x̄(t))− Ft(x̄(t+ 1)))

=
2

tα+ 2h
(Ft−1(x̄(t))− Ft−1(x̄(t+ 1)) + `t(x̄(t))− `t(x̄(t+ 1)))

(82)
≤ 2(`t(x̄(t))− `t(x̄(t+ 1)))

tα+ 2h
≤2(G+ 2αR)‖x̄(t)− x̄(t+ 1)‖2

tα+ 2h

which can be further simplified to

‖x̄(t)− x̄(t+ 1)‖2 ≤
2(G+ 2αR)

tα+ 2h
. (87)

By combining (86) and (87), for any t = 2, . . . , T , we have

‖xi(t)− x̄(t+ 1)‖2 ≤‖xi(t)− x̄(t)‖2 + ‖x̄(t)− x̄(t+ 1)‖2

≤ C

(t− 1)α+ 2h
+

2(G+ 2αR)

tα+ 2h
.

(88)

For t = 1, it is worth noting that xi(1) = x̄(1) = 0, which ensures

‖xi(1)− x̄(2)‖2 = ‖x̄(1)− x̄(2)‖2
(87)
≤ 2(G+ 2αR)

α+ 2h
. (89)

Now, we are ready to derive the regret bound of any learner i. For brevity, let εt denote the upper
bound of ‖xi(t)− x̄(t+ 1)‖2 derived in (88) and (89). Similar to (41), for any t ∈ [T ], j ∈ [n], and
x ∈ K, it is easy to verify that

ft,j(xi(t))− ft,j(x) ≤ 〈∇ft,j(xj(t)), x̄(t+ 1)− x〉 − α

2
‖xj(t)− x‖22 + 3Gεt.
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By combining the above inequality with (42), for any t ∈ [T ], j ∈ [n], and x ∈ K, we have

ft,j(xi(t))− ft,j(x)

≤〈∇ft,j(xj(t)), x̄(t+ 1)− x〉 − α

2

(
2〈xj(t), x̄(t+ 1)− x〉+ ‖x‖22 − ‖x̄(t+ 1)‖22

)
+ 3Gεt

=〈∇ft,j(xj(t))− αxj(t), x̄(t+ 1)− x〉+
α

2

(
‖x̄(t+ 1)‖22 − ‖x‖22

)
+ 3Gεt.

Finally, from the above inequality and the definition of εt, for any x ∈ K, it is not hard to verify that

T∑
t=1

n∑
j=1

ft,j(xi(t))−
T∑
t=1

n∑
j=1

ft,j(x)

≤
T∑
t=1

n∑
j=1

(
〈∇ft,j(xj(t))− αxj(t), x̄(t+ 1)− x〉+

α

2

(
‖x̄(t+ 1)‖22 − ‖x‖22

)
+ 3Gεt

)

=n

T∑
t=1

(
〈d̄(t), x̄(t+ 1)− x〉+

α

2

(
‖x̄(t+ 1)‖22 − ‖x‖22

))
+ 3nG

T∑
t=1

εt

(84)
≤ nhR2 + 3nG

(
T∑
t=2

C

(t− 1)α+ 2h
+

T∑
t=1

2(G+ 2αR)

tα+ 2h

)
.

A.3.2 PROOF OF LEMMA 11

This lemma is derived by refining the existing analysis for the standard gossip step (Duchi et al.,
2011; Hosseini et al., 2013; Zhang et al., 2017; Wan et al., 2022). Let P s denote the s-th power
of P and P sij denote the j-th entry of the i-th row in P s for any s ≥ 0. Note that P 0 denotes the
identity matrix In. For t = 1, it is easy to verify that

‖zi(t)− z̄(t)‖2 = 0. (90)

To analyze the case with T ≥ t ≥ 2, we introduce two intermediate results from Zhang et al. (2017)
and Duchi et al. (2011).

First, as shown in the proof of Lemma 6 at Zhang et al. (2017), under Assumption 1, for any
T ≥ t ≥ 2, we have

‖zi(t)− z̄(t)‖2 ≤
t−1∑
τ=1

n∑
j=1

∣∣∣∣P t−1−τij − 1

n

∣∣∣∣ ‖∇j(τ)‖2. (91)

Second, as shown in Appendix B of Duchi et al. (2011), for any positive integer s and any x in the
n-dimensional probability simplex, a doubly stochastic matrix P ensures that

‖P sx− 1/n‖1 ≤ σ2(P )s
√
n (92)

where 1 is the all-ones vector in Rn.
Let ei denote the i-th canonical basis vector in Rn. By substituting x = ei into (92), for any

positive integer s, we have
‖P sei − 1/n‖1 ≤ σ2(P )s

√
n. (93)
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If s = 0, we also have

‖P 0ei − 1/n‖1 =
2(n− 1)

n
≤
√
n = σ2(P )0

√
n (94)

where the inequality is due to n ≥ 1.
Moreover, by combining (91) with ‖∇i(t)‖2 ≤ ξ, for any T ≥ t ≥ 2, we have

‖zi(t)− z̄(t)‖2 ≤ξ
t−1∑
τ=1

n∑
j=1

∣∣∣∣P t−1−τij − 1

n

∣∣∣∣ = ξ

t−1∑
τ=1

n∑
j=1

∣∣∣∣P t−1−τji − 1

n

∣∣∣∣
=ξ

t−1∑
τ=1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

(95)

where the first equality is due to the symmetry of P . To further bound the right side of (95), previous
studies have provided two different choices.

First, as in Duchi et al. (2011), one can divide τ ∈ [1, t− 1] into two parts by

τ ′ = t− 1−
⌈

ln(T
√
n)

ln(σ2(P )−1)

⌉
. (96)

For any τ ∈ [1, τ ′], it is not hard to verify that∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

(93)
≤ σ2(P )t−1−τ

√
n

(96)
≤ σ2(P )

ln(T
√
n)

ln(σ2(P )−1)
√
n =

1

T
. (97)

Then, by combining (95) and (97), for any T ≥ t ≥ 2, it is easy to verify that

‖zi(t)− z̄(t)‖2 ≤
ξτ ′

T
+ ξ

t−1∑
τ=τ ′+1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

≤ξ + 2ξ

⌈
ln(T
√
n)

ln(σ2(P )−1)

⌉
≤ξ + 2ξ

(
ln(T
√
n)

1− σ2(P )
+ 1

) (98)

where the second inequality is due to τ ′ ≤ T and
∥∥P t−1−τei − 1

n

∥∥
1
≤ 2 for any τ ≤ t− 1, and the

last inequality is due to ln(x−1) ≥ 1− x for any x > 0.
The second choice is to simply combine (95) with (93) and (94) as in Hosseini et al. (2013),

Zhang et al. (2017), and Wan et al. (2022), which provides the following upper bound

‖zi(t)− z̄(t)‖2 ≤ ξ
t−1∑
τ=1

σ2(P )t−1−τ
√
n =

(1− σ2(P )t−1)ξ
√
n

1− σ2(P )
≤ ξ

√
n

1− σ2(P )
(99)

for any T ≥ t ≥ 2.
However, both bounds in (98) and (99) are unsatisfactory, since the former has a factor of lnT

and the latter has a factor of
√
n. To address these issues, we incorporate the above two ideas.

Specifically, we redefine τ ′ as

τ ′ = t− 1−
⌈

ln(
√
n)

ln(σ2(P )−1)

⌉
. (100)
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Then, from (95), for any T ≥ t ≥ 2, we have

‖zi(t)− z̄(t)‖2 ≤ξ
τ ′∑
τ=1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

+ ξ
t−1∑

τ=τ ′+1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

(93)
≤ ξ

τ ′∑
τ=1

σ2(P )t−1−τ
√
n+ ξ

t−1∑
τ=τ ′+1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

≤ξ
τ ′∑
τ=1

σ2(P )τ
′−τ + ξ

t−1∑
τ=τ ′+1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

=
(1− σ2(P )τ

′
)ξ

1− σ2(P )
+ ξ

t−1∑
τ=τ ′+1

∥∥∥∥P t−1−τei − 1

n

∥∥∥∥
1

≤ ξ

1− σ2(P )
+ 2ξ

(
ln(
√
n)

1− σ2(P )
+ 1

)

(101)

where the third inequality is due to σ2(P )t−1−τ
′ ≤ 1/

√
n for τ ′ in (100), and the last inequality is

due to
∥∥P t−1−τei − 1

n

∥∥
1
≤ 2 for any τ ≤ t− 1 and (100). Finally, this proof can be completed by

combining (90) and (101).
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