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Abstract
Adaptive subgradient methods are able to leverage the second-order information of functions to improve the regret and have
become popular for online learning and optimization. According to the amount of information used, these methods can be
divided into diagonal-matrix version (ADA-DIAG) and full-matrix version (ADA-FULL). In practice, ADA-DIAG is themost
commonly adopted instead of ADA-FULL, because ADA-FULL is computationally intractable in high dimensions though
it has smaller regret when gradients are correlated. In this paper, we propose to employ techniques of matrix approximation
to accelerate ADA-FULL and develop two methods based on random projections. Compared with ADA-FULL, at each
iteration, our methods reduce the space complexity from O(d2) to O(τd) and the time complexity from O(d3) to O(τ 2d)

where d is the dimensionality of the data and τ � d is the number of random projections. Experimental results about online
convex optimization and training convolutional neural networks show that our methods are comparable to ADA-FULL and
outperform other state-of-the-art algorithms including ADA-DIAG.

Keywords Online learning · Adaptive methods · Matrix approximation · Random projection

1 Introduction

Online learning is a general framework for modeling sequen-
tial decision making [2,16,36,37] and has been widely used
in many domains such as online routing [3], online pattern
mining [15] and online detection [25,34]. Adaptive subgra-
dient methods (ADAGRAD) are popular for online learning,
which dynamically integrate knowledge of the geometry of
data observed in earlier iterations to guide the direction of
updating [7]. Different from the conventional online meth-
ods, ADAGRAD employ adaptive proximal functions to
control the learning rate for each dimension, and the proximal
functions are iteratively modified by the algorithm instead of
tuning manually. There are two versions of adaptive subgra-
dient methods: ADA-DIAG which uses a diagonal matrix to
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define the proximal function and ADA-FULL which uses a
full matrix to define the proximal function. Because ADA-
FULL is computationally intractable in high dimensions,
ADA-DIAG is the most commonly studied and adopted ver-
sion in practice.

However, compared with ADA-FULL, ADA-DIAG can-
not capture the correlation in the gradients. As a result,
the regret of ADA-DIAG may be worse than that of ADA-
FULL when the high-dimensional data are dense and have
a low-rank structure. This dilemma prompts a question as to
whether we can design algorithms that possess the merits of
two versions: i.e., the light computation of ADA-DIAG and
the small regret of ADA-FULL. In a recent work [19], Krum-
menacher et al. presented two approximation algorithms to
accelerateADA-FULL, namelyADA-LRandRADAGRAD.
AlthoughADA-LR is equipped with a regret bound, its space
and time complexities are quadratic in the dimensionality d,
which is unacceptable when d is large. In contrast, the space
and time complexities of RADAGRAD are linear in d, but it
lacks theoretical guarantees.

Along this line of research, this paper aims to attain
theoretical guarantees and at the same time keeping the com-
putations light. Note that ADA-FULL is computationally
impractical mainly due to the fact it needs to maintain a
matrix of gradient outer products and compute its square root
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and inverse in each round. Actually, similar problems have
been encountered in online Newton step (ONS) for exponen-
tially concave functions [16]. Recently, Luo et al. proposed
to accelerate ONS using matrix sketching methods includ-
ing random projections [22]. Motivated by previous work,
we first propose to employ random projections to construct
a low-rank approximation of gradient outer products and
manipulate this low-rank matrix in subsequent calculations.
In this way, the new algorithm, named ADA-GP, reduces the
space complexity from O(d2) to O(τd) and the time com-
plexity from O(d3) to O(τ 2d), implying both the space and
time complexities have a linear dependence on the dimen-
sionality d.

ADA-GP achieves excellent empirical performance in our
experiments. However, due to subtle independence issues, it
is difficult to analyze ADA-GP theoretically. To circumvent
this problem, we propose to replace the outer product matrix
of gradients in ADA-FULL with the outer product matrix of
data and then develop a similar method, named ADA-DP,
that applies random projections to the outer product matrix
of data. The space and time complexities of ADA-DP are
similar to those of ADA-GP. Moreover, we present theoret-
ical analysis for ADA-DP when the outer product matrix of
data is low rank, and further extend to the full-rank case.
In the experiments, we first examine the performance of
our methods on online convex optimization, and the results
demonstrate that they are highly comparable to ADA-FULL
and aremuchmore efficient. Furthermore, we conduct exper-
iments on training convolutional neural networks (CNN) and
show that ADA-GP outperforms ADA-DIAG and RADA-
GRAD.

2 Related work

ADAGRAD Adaptive subgradient methods use the second-
order information to tune the step size of gradient descent
adaptively [7]. For sparse data, the regret guarantee of ADA-
GRAD could be exponentially smaller in the dimension d
than the non-adaptive regret bound. In the following, we
provide a brief introduction of ADAGRAD. Note that the
idea of ADAGRAD can be incorporated into either primal–
dual subgradient method [33] or composite mirror descent
[8]. For brevity, we take the composite mirror descent as an
example.

In the t-round, the learner needs to determine
an action β t ∈ R

d and then observes a composite func-
tion Ft (β) = ft (β) + ϕ(β) where ft and ϕ are convex.
The learner suffers loss Ft (β t ), and the goal is to mini-
mize the accumulated loss over T iterations. Let ∇ ft (β)

denote the subdifferential set of function ft evaluated at
β and gt ∈ ∇ ft (β t ) be a particular vector in the subdif-
ferential set. Define the outer product matrix of gradients

Gt = ∑t
i=1 gig

�
i . Then, we use the square root of Gt to

construct a positive definite matrix Ht and have the follow-
ing two choices:

Ht =
{

σ Id + diag(Gt )
1/2 ADA-DIAG

σ Id + G1/2
t ADA-FULL

where σ > 0 is a parameter and Id is the identity
matrix of size d × d. The proximal term is given by
�t (β) = 1

2 〈β, Htβ〉, and the associatedBregman divergence
is

B�t (x, y) = �t (x) − �t (y) − 1

2
〈∇�t (y), x − y〉.

In each iteration, the composite mirror descent method
updates by

β t+1 = argmin
β

{
η〈gt ,β〉 + ηϕ(β) + B�t (β,β t )

}

= β t − ηH−1
t gt , if ϕ = 0

where η > 0 is a fixed step size. When the dimensionality d
is large, ADA-FULL is impractical because the storage cost
of Gt and the running time of finding its square root and
inverse of Ht are unacceptable.

To make ADA-FULL scalable, Krummenacher et al. pro-
posed two methods that approximate the proximal term
�t (β) [19]. Based on the fast randomized singular value
decomposition (SVD) [26], they presented an algorithm
ADA-LR that performs the following updates:

Gt = Gt−1 + gtg�
t

G̃t = Gt� Random Projection

QR = G̃t QR-decomposition

B = Q�Gt

U�V� = B SVD

β t+1 = β t − ηV (�1/2 + σ Iτ )
−1V�gt

(1)

where � ∈ R
d×τ is the random matrix of the subsampled

randomized Fourier transform. We note that random projec-
tions are utilized in the second step to generate a smaller
matrix G̃t ∈ R

d×τ . It is easy to verify that the space and
time complexities of ADA-LR are, respectively, O(d2) and
O(τd2), which are still unacceptable when the d is large.

To further improve the efficiency, they presented algo-
rithmRADAGRADby introducingmore randomized approx-
imations, the space and time complexities of which are,
respectively, O(τd) and O(τ 2d). Unfortunately, RADA-
GRAD is a heuristicmethod and lacks theoretical guarantees.
Note that the basic ideas of ADA-LR and RADAGRAD are
using random projection to construct an orthogonal matrix Q
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such that QQ�Gt ≈ Gt . However, QQ�Gt is not an unbi-
ased estimation of Gt . In contrast, our methods directly use
random projection to construct an unbiased estimation of Gt

or the outer productmatrix of data. Furthermore, ourmethods
are very efficient in the sense that their computational com-
plexities are linear in the dimensionality d, and ADA-DP is
equipped with theoretical guarantees. In contrast, although
RADAGRAD has a similar computational cost, it does not
have theoretical justifications.

As previously mentioned, in [22], Luo et al. adopted
matrix sketching methods to accelerate ONS that also
encounters the similar problems asADA-FULL. Specifically,
their ONS updates by

At = α Id +
t∑

i=1

ηigig�
i and β t+1 = β t − A−1

t gt

where α > 0 and ηi = O(1/
√
i) for general convex func-

tions. We can reformulate this update rule as

Ht = σ Id +
t∑

i=1

1√
i
gig�

i and β t+1 = β t − ηH−1
t gt .

To accelerateONS, they usematrix sketchingmethods to cal-
culate a low-rank approximationof

∑t
i=1

1√
i
gig�

i .Motivated
by Luo et al. [22], our work employs random projections to
calculate a low-rank approximation of full matrix.

However, there are obviously differences between our
work and this related work. First, our ADA-GP uses ran-
dom projection to approximate

∑t
i=1 gig

�
i rather than

∑t
i=1

1√
i
gig�

i approximated by RP-SON [22]. Although
these full matrices are similar, the latter could destroy
the data-dependent property because of the corresponding
O(

√
Td) regret bound. Moreover, we propose to use the

outer product matrix of data to replace the outer product
matrix of gradients

∑t
i=1 gig

�
i which leads toADA-DP.Note

that this simple change can avoid the dependence issue that
the gradient gt depends on the random vectors. Second, the
theoretical analysis in our work is obviously different from
Luo et al. [22]. The only common part is the property of
the random projections for low-rank data. But we further
exploit the property of the random projection for full-rank
data. Third, our methods and this related work are designed
for different tasks. Our paper aims to accelerate ADA-FULL,
and this related work aims to accelerate ONS. Note that
ADA-FULL is a data-dependent algorithm for general con-
vex function and ONS is proposed to derive a logarithmic
regret for exponentially concave functions.

Random projection Random projection [17,23,32] is a
simple yet powerful method for dimensionality reduction.
For a data point x ∈ R

n , random projection directly reduces
its dimensionality to τ by R�x, where R ∈ R

n×τ is a ran-

dom matrix. For any two different points, random projection
can approximately preserve their distance after reducing their
dimensionalitywith high probability. It has been successfully
applied to many machine learning tasks including classi-
fication [10,28], regression [24], clustering [4,9], manifold
learning [6,11] and optimization [12,35]. Random projec-
tion can be implemented in various different ways with the
corresponding random matrices [1,21], and the most classi-
cal one is the Gaussian random projection, where each entry
of R is sampled from a Gaussian distribution. In this paper,
we focus on Gaussian random projection due to its nice the-
oretical properties and easy implementations.

3 Adaptivemethods with random projection

In this section, we introduce our proposed methods and the-
oretical results, the proofs of which have been deferred to
“Appendix A”.

3.1 Problem setting

To facilitate presentations, we consider the case ϕ = 0, and
our methods can be directly extended to the general case
ϕ 
= 0. The goal of the learner is to minimize the regret,
defined as

R(T ) =
T∑

t=1

ft (β t ) −
T∑

t=1

ft (β
∗)

where β∗ is a fixed optimal predictor.
Besides that, let us introduce the necessary notations used

in our paper. We use E[·] to denote expectation and Id to
denote the identity matrix of size d×d. For anymatrix X , we
use ‖X‖ to denote its spectral norm, λi (X) to denote its i-th
largest eigenvalue and tr(X) to denote its trace. For any vector
x, we use ‖x‖2 to denote its Euclidean �2 norm.More general,
with proximal term �(x) = 1

2 〈x, Hx〉 defined by a positive

definite matrix H , we use ‖x‖�∗ =
√〈

x, H−1x
〉
to denote

the associated dual norm. These notations are summarized
in Table 1.

3.2 The proposed ADA-GPmethod

From previous discussions, we know that if one can find a
low-rankmatrix to approximateGt , then both space and time
complexities of ADA-FULL can be reduced dramatically.
Random projections provide an elegant way for low-rank
matrix approximations, as explained below.

Define

A�
t = [g1, . . . , gt ] ∈ R

d×t , Rt = [r1, . . . , rt ] ∈ R
τ×t
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Table 1 Summary of notations

Notation Meaning

E[·] Expectation

Id Identity matrix of size d × d

‖X‖ Spectral norm of matrix X

λi (X) i-th largest eigenvalue of matrix X

tr(X) Trace of matrix X

‖x‖2 Euclidean �2 norm of x

‖x‖�∗ Dual norm of x with respect to �

where the i-th column of A�
t is gradient gi , and each entry

of Rt is a Gaussian random variable drawn from N (0, 1/τ)

independently. Then, we have

Gt = A�
t At , E[R�

t Rt ] = Id .

To accelerate the computation, we define

St = Rt At =
t∑

i=1

rig�
i ∈ R

τ×d .

Note that St can be calculated on the fly as St = St−1+rtg�
t .

When τ is large enough, we expect R�
t Rt ≈ Id , implying

S�
t St = A�

t R�
t Rt At ≈ A�

t At = Gt .

Thus, S�
t St could be used as a low-rank approximation of

Gt . The matrix Ht in the proximal term can be redefined as

Ht = σ Id + (S�
t St )

1/2.

Let SVD of St be St = U�V�, then we have S�
t St =

V�2V� and Ht = σ Id + V�V�. According to Woodbury
formula [14], we have

H−1
t = (σ Id + V�V�)−1

= 1

σ

(
Id − V (σ Iτ + �)−1�V T )

.

As a result, in the t-th round, our algorithm performs the
following updates

St = St−1 + rtg�
t Random Projection

U�V� = St SVD

β t+1 = β t − η

σ

(
gt − V (σ Iτ + �)−1�V�gt

)
(2)

The detailed procedure is summarized in Algorithm 1 and
named as adaptive online learning with gradient projection
(ADA-GP).

Algorithm 1 ADA-GP
1: Input: η > 0, σ > 0, τ , S0 = 0τ×d ,β1 = 0;
2: for t = 1, . . . , T do
3: Receive gt = ∇ ft (βt )

4: St = St−1 + rtg�
t {Random Projections}

5: U�V� = St {SVD}
6: β t+1 = β t − η

σ

(
gt − V (σ Iτ + �)−1�V�gt

)

7: end for

Remark First, it is easy to verify the time and space complex-
ities of our ADA-GP are O(τ 2d) and O(τd), respectively.
Thus, both of them are linear in the dimensionality d. Second,
comparing (2) with (1), we observe that our updating rules
are much more simple than those of ADA-LR. Note that the
RADAGRAD algorithm of [19] is even more complicated
than ADA-LR. Third, besides random projection, we also
note that there exist other ways for low-rank matrix approxi-
mations, such as matrix sketching [32]. After the conference
version of this work, we have further proposed to utilize a
deterministic matrix sketching techniques named as frequent
directions [13] to approximate ADA-FULL [30].

3.3 The proposed ADA-DPmethod

Although ADA-GP performs very well in our experiments,
it is difficult to establish a regret bound due to dependence
issues. To be specific, the gradient gt depends on the random
vectors [r1, . . . , rt−1], and as a result, standard concentration
inequalities cannot be directly applied [29].

To avoid the aforementioned problem, we propose a strat-
egy to get ride of the dependence issues and the newalgorithm
is equipped with theoretical guarantees. We consider the
case ft (β t ) = l(β�

t xt ) where xt is a data vector. Then,
we assume the data points x1, . . . , xt are independent from
our algorithm. The key idea is to replace the outer prod-
uct matrix of gradients Gt with the outer product matrix
of data Xt = ∑t

i=1 xix
�
i . Accordingly, Ht will be defined

as σ Id + X1/2
t . To accelerate computations, our problem

becomes finding a low-rank approximation of Xt .
Let C�

t = [x1, . . . , xt ] ∈ R
d×t , where each column is a

data vector. Similar to ADA-GP, we define

St = RtCt =
t∑

i=1

rix�
i ∈ R

τ×d

where Rt ∈ R
τ×t is the Gaussian random matrix. In this

case, since Rt is independent of Ct , we have

E[S�
t St ] = C�

t E[R�
t Rt ]Ct = C�

t Ct = Xt

which means S�
t St is an unbiased estimation of Xt .

The rest steps are similar to that of ADA-GP. The detailed
procedure is summarized in Algorithm 2, named as adaptive
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Algorithm 2 ADA-DP
1: Input: η > 0, σ > 0, τ , S0 = 0τ×d ,β1 = 0;
2: for t = 1, . . . , T do
3: Receive xt and gt = ∇ ft (βt ) = l ′(β�

t xt )xt
4: St = St−1 + rtx�

t {Random Projections}
5: U�V� = St {SVD}
6: β t+1 = β t − η

σ

(
gt − V (σ Iτ + �)−1�V�gt

)

7: end for

online learning with data projection (ADA-DP). It is obvious
that the computation cost of ADA-DP is almost the same as
that of ADA-GP. Thus, both the space and time complexities
of ADA-DP are linear in d.

The main advantage of ADA-DP is that it has formal
theoretical guarantees. We first consider the case that the
data matrix CT is low rank, and have the following theorem
regarding the regret of Algorithm 2.

Theorem 1 Let r � d be the rank of CT , and 0 < δ <

1 be the confidence parameter. Assume each entry of rt ∈
R

τ is a Gaussian random variable drawn from N (0, 1/τ)

independently, τ = �(
r+log(T /δ)

ε2
) and σ > 0; then, ADA-

DP ensures

R(T ) ≤ σ

2η
‖β∗‖22 + 1

2η
max
t≤T

‖β∗ − β t‖22 tr(X1/2
T )

+ 2η√
1 − ε

max
t≤T

l ′(β�
t xt )

2 tr(X1/2
T )

+ ε

2η
max
t≤T

‖β∗ − β t‖22
T∑

t=1

‖X1/2
t ‖

with probability at least 1 − δ.

Remark Theorem 1 means that we can set the number of
random projections as τ = �̂(r)when the data matrix is low
rank.

When the data matrix is full rank, Theorem 1 is inappro-
priate because it implies the number of random projections is
on the order of the dimensionality. For the full-rank case, we
further establish the following theorem to bound the regret
of Algorithm 2.

Theorem 2 Let c ≥ 1/32, σ ≥ √
α > 0, σ 2

ti = λi (Xt ),

r̃t = ∑
i

σ 2
ti

α+σ 2
ti
, r̃∗ = max

1≤t≤T
r̃t , σ 2∗1 = max

1≤t≤T
σ 2
t1, and

0 < δ < 1. Assume each entry of rt ∈ R
τ is an inde-

pendent random Gaussian variable drawn from N (0, 1/τ),

τ ≥ r̃∗σ 2∗1
cε2(α+σ 2∗1)

log 2dT
δ

and then ADA-DP ensures

R(T ) ≤ σ

2η
‖β∗‖22 + 1

2η
max
t≤T

‖β∗ − β t‖22 tr(X1/2
T )

+ 2η√
1 − ε

max
t≤T

l ′(β�
t xt )

2 tr(X1/2
T )

+ ε

2η
max
t≤T

‖β∗ − β t‖22
T∑

t=1

‖X1/2
t ‖

+
√

εαT

η
max
t≤T

‖β∗ − β t‖22.

with probability at least 1 − δ.

Remark Following [35], we introduce the quantity r̃t to mea-
sure the effective rank of the data matrix Ct . When the
eigenvalues of C�

t Ct decrease rapidly, r̃t could be signifi-
cantly smaller than d, even when Ct is full rank. Compared
with Theorem 1, the upper bound in this theorem contains
an additional term caused by the approximation error of full-
rank matrices. Note that Theorem 2 means that we can set
the number of random projections as τ = �̂(maxt r̃t ) when
the data matrix has low effective rank.

Note that our methods and theories can be extended to the
general case ϕ 
= 0.We just need to replace the updating rule
as

β t+1 = argmin
β

{
η〈gt ,β〉 + ηϕ(β) + B�t (β,β t )

}
.

Although the updating of β t+1 may not have closed-form
solution, the computational cost of H−1

t can still be reduced
dramatically. The regret bound remains on the same order.

4 Experiments

In this section, we conduct numerical experiments to demon-
strate the efficiency and effectiveness of our methods.

4.1 Online convex optimization

First, we compare our two methods against ADA-FULL,
ADA-DIAG, RADAGRAD [19] and RP-SON [22] on a syn-
thetic data, which is approximately low rank. Let β∗ =
β̂∗/‖β̂∗‖2 where each entry of β̂∗ is drawn independently
fromN (0, 1). We consider the problem of online regression
where ft (β) = |β�xt − yt | and yt = β�∗ xt . We generate a
regression dataset with T = 10,000 and d = 500. In order
to meet the requirement of low rankness, each data point
xt is sampled independently from a Gaussian distribution
N (μ, �) where μ = 1 and � has rapidly decaying eigen-
values λ j (�) = λ0 j−α with α = 2 and λ0 = 100.

For each algorithm, the parameters η and σ are searched
in {1e−4, 1e−3, . . . , 100}, and we choose the best values.
We generate 5 random permutations for the synthetic data
and report average results of all the algorithms. Figure 1a
and b shows shows the regret and running time of different
algorithms where we set τ = 10 for methods using random

123



394 International Journal of Data Science and Analytics (2020) 9:389–400

Number of Examples Seen
0 2000 4000 6000 8000 10000

R
eg

re
t

0

200

400

600

800

1000
ADA-FULL
ADA-DIAG
RADAGRAD
RP-SON
ADA-GP
ADA-DP

(a) Regret for τ = 10 (b) Running time for τ = 10
τ

10 60 110 160 210

To
ta

l R
eg

re
t

200

400

600

800
ADA-FULL
ADA-DIAG
RADAGRAD
RP-SON
ADA-GP
ADA-DP

(c) Total regret for different τ

Fig. 1 Experimental results for online regression on the synthetic data

Table 2 Datasets used in experiments

Dataset #Examples #Features #Classes

Gisette 6000/1000 5000 2

SensIT vehicle 78,823/19,705 100 3

Usps 7291/2007 256 10

MNIST 60,000/10,000 784 10

CIFAR10 50,000/10,000 3072 10

SVHN 73,257/26,032 3072 10

projections. The regret of our two methods is very close and
better than ADA-DIAG, RADAGRAD and RP-SON, which
indicates our methods approximate ADA-FULL very well.
From the comparison of running time, we find that our two
methods are obviously faster than ADA-FULL. Figure 1c
further shows the total regret of all the algorithms when τ

is set to different values. Note that ADA-FULL and ADA-
DIAG are not affected by τ . We find that the total regret
of methods using random projections is decreased with the
increase of τ , and the regret of our two methods is much
closer to that of ADA-FULL than other methods.

Second, following [7], we perform online classification
to evaluate the performance of our methods. In each round,
the learning algorithm receives a single example and ends
with a single pass through the training data. There are two
metrics to measure the performance: the online mistakes and
the offline accuracy on the testing data. In the experiments,
we use cross-entropy cost function as the loss.

We conduct numerical experiments on three real-world
datasets from LIBSVM repository [5]. Table 2 includes the
description of these datasets. The parameters η and σ are
searched in {1e−4, 1e−3, . . . , 10}, and we choose the best
values for each algorithm. To reduce the computational cost,
we set the number of projections τ ≤ √

d for each dataset.
Specifically, we set τ = 10 for both SensIT Vehicle and
Gisette datasets and τ = 15 for Usps dataset. We omit the
result of ADA-FULL on the Gisette dataset, because it is too
slow.

We divide all the datasets into training part and testing
part, and the numbers of training and testing examples are
shown in Table 2. For training data, we generate 5 random
permutations and report the average result. Figure 2 shows
the comparison of test accuracy andmistakes amongdifferent
algorithms. In addition, Table 3 presents the averaged test
accuracy (%) with the standard deviation (%) after a single
pass through training data for different methods. From Fig. 2
and Table 3, we have the following observations.

– Ignoring the computation issue,ADA-FULLachieves the
highest test accuracy and the lowest mistakes after a sin-
gle pass through training data.

– The performance of ADA-DIAG is much worse than all
the other methods, which means only keeping a diagonal
matrix is insufficient to capture the second-order infor-
mation.

– Our ADA-GP and ADA-DP are close to ADA-FULL,
which indicates that random projections cause little
adverse affect on the performance.

– Our two methods are better than RADAGRAD in almost
all the comparisons, which is due to the unbiased esti-
mation used in our methods. Note that the unbiased
estimation makes our methods to be better approxima-
tions of ADA-FULL than RADAGRAD.

– Our two methods are also better than RP-SON in
almost all the comparisons, which verifies that the full
matrix approximated by RP-SON could destroy the data-
dependent property.

4.2 Non-convex optimization in CNN

Recently, ADA-DIAGbecomes popular for non-convex opti-
mization such as training neural networks. And in [19],
Krummenacher et al. also show that RADAGRAD performs
well for training neural networks. Therefore, taking train-
ing convolutional neural networks (CNN) as an example,
we verify that our method outperforms ADA-DIAG and
RADAGRAD.Because the convolutional layer does notmeet
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Fig. 2 The comparison of mistakes (top row) and test accuracy (bottom row) for online classification

Table 3 Test accuracy (%) after a single pass through training data

Dataset ADA-FULL ADA-DIAG RADAGRAD RP-SON ADA-GP ADA-DP

Gisette 96.28 ± 0.47 96.94 ± 0.08 97.02 ± 0.21 97.28 ± 0.17 97.30 ± 0.32

SensIT vehicle 80.78 ± 0.09 79.37 ± 0.21 80.42 ± 0.43 80.49 ± 0.12 80.75 ± 0.13 80.72 ± 0.06

Usps 91.51 ± 0.20 89.30 ± 0.92 90.25 ± 0.56 89.33 ± 0.55 91.11 ± 0.22 90.99 ± 0.18

Fig. 3 The 4-layer CNN architecture used in our experiment

the case ft (β t ) = l(β�
t xt ), we only perform ADA-GP on

training CNN. We use the simple and standard architec-
ture, which is chosen from Keras examples directory 1 and
shown in Fig. 3, to perform classification on theMNIST [20],
CIFAR10 [18] and SVHN [27] datasets.

Parameters η of all algorithms and σ of ADA-GP and
RADAGRAD are searched in {1e−4, 1e−3, . . . , 1}. For
ADA-DIAG, σ is set to 1e−8 as it is typically recommended.
We choose the best values for each algorithm. Following
as [19], we only consider applying ADA-GP and RADA-

1 https://github.com/keras-team/keras/blob/master/examples/
mnist_cnn.py.

GRAD to the convolutional layer, and other layers are still
trained with ADA-DIAG for all datasets. For all algorithms,
we run 5 times with batch size 128 and report the aver-
age results. Figure 4 shows the comparison of training loss
and test accuracy during training among different algorithms
where we set τ = 20. We find that ADA-GP can obviously
improve the performance of ADA-DIAG on all datasets,
and note that RADAGRAD is outperformed by ADA-DIAG
in terms of training loss on CIFAR10. This result shows
that ADA-GP is a better approximation of ADA-FULL than
RADAGRAD.

5 Conclusions and future work

In this paper, we present ADA-GP and ADA-DP to approx-
imate ADA-FULL using random projections. The time and
space complexities of both algorithms are linear in the
dimensionality d, and thus they are able to accelerate the

123

https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py


396 International Journal of Data Science and Analytics (2020) 9:389–400

(a) (b) (c)

Fig. 4 The comparison of training loss (top row) and test accuracy (bottom row) for training CNN

computation significantly. Furthermore, according to our
theoretical analysis, the number of random projections in
ADA-DP is on the order of the low rank or low effective rank.
Numerical experiments on online convex optimization show
that ourmethods outperformADA-DIAG,RADAGRADand
RP-SON and are close to ADA-FULL. And experiments on
training CNN show that ADA-GP outperforms ADA-DIAG
and RADAGRAD.

One limitation of thiswork is that only the proposedADA-
DP has theoretical guarantees for the case ft (β) = l(β�xt ).
In the future,wewill investigate how to extend our theoretical
results for more general case.
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A Theoretical analysis

In this section, we provide proofs of Theorems 1 and 2.

A.1 Supporting results

The following results are used throughout our analysis.

Lemma 1 (Proposition 3 of [7]). Let sequence {β t } be gen-
erated by ADA-DP. We have

R(T ) ≤ 1

η

T−1∑

t=1

[
B�t+1(β

∗,β t+1) − B�t (β
∗,β t+1)

]

+ 1

η
B�1(β

∗,β1) + η

2

T∑

t=1

‖ f ′
t (β t )‖2�∗

t
.

Lemma 2 Let Xt = ∑t
i=1 xix

�
i and A† denote the pseudo-

inverse of A, then

T∑

t=1

〈
xt , (X

1/2
t )†xt

〉
≤ 2

T∑

t=1

〈
xt , (X

1/2
T )†xt

〉

= 2 tr(X1/2
T ).

Lemma 2 can be proved in the same way as Lemma 10 of
[7].

Theorem 3 (Theorem 2.3 of [32]). Let 0 < ε, δ < 1 and S =
1√
k
R ∈ R

k×n where the entries of R are independent stan-

dard normal random variables. Then if k = �(
d+log(1/δ)

ε2
),

then for any fixed n × d matrix A, with probability 1 − δ,
simultaneously for all x ∈ R

d ,

(1 − ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22.

Based on the above theorem, we derive the following corol-
lary.

Corollary 1 Let 0 < ε, δ < 1 and each entry of rt ∈ R
τ

is a Gaussian random variable independently drawn from
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N (0, 1/τ). Then, if τ = �(
r+log(T /δ)

ε2
), with probability 1−

δ, simultaneously for all t = 1, . . . , T ,

(1 − ε)C�
t Ct � S�

t St � (1 + ε)C�
t Ct .

Theorem 4 (Theorem 10 of [35]). Let C = diag(c1, . . . , cp)
and S = diag(s1, . . . , sp) be p × p diagonal matrices,
where ci 
= 0 and c2i + s2i = 1 for all i . Let R ∈ R

p×n

be a Gaussian random matrix. Let M = C2 + 1
n SRR

�S
and r = ∑

i s
2
i .

Pr(λ1(M) ≥ 1 + t) ≤ q · exp
(

− cnt2

maxi (s2i )r

)

,

Pr(λp(M) ≤ 1 − t) ≤ q · exp
(

− cnt2

maxi (s2i )r

)

,

where the constant c is at least 1/32, and q is the
rank of S.

Based on the above theorem, we derive the following corol-
lary.

Corollary 2 Let c ≥ 1/32, α > 0, σ 2
ti = λi (C�

t Ct ), r̃t =
∑

i
σ 2
ti

α+σ 2
ti
, r̃∗ = max

k≤t≤T
r̃t and σ 2∗1 = max

1≤t≤T
σ 2
t1. Let Kt =

α Id + C�
t Ct , K̃t = α Id + S�

t St and Ĩt = K−1/2
t K̃t K

−1/2
t .

If τ ≥ r̃∗σ 2∗1
cε2(α+σ 2∗1)

log 2dT
δ
, with probability at least 1 − δ,

simultaneously for all t = 1, . . . , T ,

(1 − ε)Id � Ĩt � (1 + ε)Id .

A.2 Proof of Theorem 1

Let X̃t denote S�
t St . First, we consider bounding the first

term in the upper bound of Lemma 1. With probability 1− δ,
we have

B�t+1(β
∗,β t+1) − B�t (β

∗,β t+1)

= 1

2

〈
β∗ − β t+1, (X̃

1/2
t+1 − X̃1/2

t )(β∗ − β t+1)
〉

≤ 1

2

〈
β∗ − β t+1,

√
1 + εX1/2

t+1(β
∗ − β t+1)

〉

− 1

2

〈
β∗ − β t+1,

√
1 − εX1/2

t (β∗ − β t+1)
〉

≤ 1

2

〈
β∗ − β t+1, (X

1/2
t+1 − X1/2

t )(β∗ − β t+1)
〉

+ ε

4

〈
β∗ − β t+1, (X

1/2
t+1 + X1/2

t )(β∗ − β t+1)
〉

≤ 1

2
‖β∗ − β t+1‖22‖(X1/2

t+1 − X1/2
t )‖

+ ε

4

〈
β∗ − β t+1, (X

1/2
t+1 + X1/2

t )(β∗ − β t+1)
〉

≤ 1

2
‖β∗ − β t+1‖22 tr(X1/2

t+1 − X1/2
t )

+ ε

4

〈
β∗ − β t+1, (X

1/2
t+1 + X1/2

t )(β∗ − β t+1)
〉

where the first inequality is due to Corollary 1.
Thus, we can get

T−1∑

t=1

[
B�t+1(β

∗,β t+1) − B�t (β
∗,β t+1)

]

≤ 1

2

T−1∑

t=1

‖β∗ − β t+1‖22 tr(X1/2
t+1 − X1/2

t )

+ ε

4

T−1∑

t=1

〈
β∗ − β t+1, (X

1/2
t+1 + X1/2

t )(β∗ − β t+1)
〉

≤ 1

2
max
t≤T

‖β∗ − β t‖22 tr(X1/2
T ) − 1

2
‖β∗ − β1‖22 tr(X1/2

1 )

+ ε

2
max
t≤T

‖β∗ − β t‖22
T∑

t=1

‖X1/2
t ‖

− ε

4
‖β∗ − β1‖22 tr(X1/2

1 ).

(3)

Note that β1 = 0, then

B�1(β
∗,β1) = 1

2

〈
β∗, (σ Id + X̃1/2

1 )β∗〉

≤ 1

2
σ‖β∗‖22 + 2 + ε

4
‖β∗‖22 tr(X1/2

1 )

(4)

where the inequality is due to Corollary 1.
Then, we consider the bound of

∑T
t=1 ‖ f ′

t (β t )‖2�∗
t
. With

probability 1 − δ, we have

1

2
‖ f ′

t (β t )‖2�∗
t

=
〈
gt , (σ Id + X̃1/2

t )−1gt
〉

≤ 1√
1 − ε

〈
gt , (X

†
t )

1/2gt
〉
= l ′(β�

t xt )
2

√
1 − ε

〈
xt , (X

†
t )

1/2xt
〉

where the inequality is due to Corollary 1. According to
Lemma 2, we have

T∑

t=1

‖ f ′
t (β t )‖2�∗

t

≤
T∑

t=1

2l ′(β�
t xt )

2

√
1 − ε

〈
xt , (X

†
t )

1/2xt
〉

≤ max
t≤T

l ′(β�
t xt )

2 2√
1 − ε

T∑

t=1

〈
xt , (X

†
t )

1/2xt
〉

≤ 4√
1 − ε

max
t≤T

l ′(β�
t xt )

2 tr(X1/2
T ).

(5)
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We complete the proof by substituting (3), (4) and (5) into
Lemma 1.

A.3 Proof of Theorem 2

Inspired by the proof of Theorem 1, we can derive Theorem 2
by, respectively, bounding each term in the upper bound of
Lemma 1. Before that, we need to derive the lower and upper
bounds of (S�

t St )1/2 based on Corollary 2.
Let the SVD of C�

t be C�
t = U�V� where U ∈

R
d×d , � ∈ R

d×d , V ∈ R
t×d . Let Kt = α Id + C�

t Ct ,

K̃t = α Id + S�
t St and Ĩt = K−1/2

t K̃t K
−1/2
t . According to

Corollary 2, with probability at least 1 − δ, simultaneously
for all t = 1, . . . , T ,

S�
t St = K̃t − α Id = K 1/2

t Ĩt K
1/2
t − α Id

� (1 + ε)Kt − α Id = (1 + ε)C�
t Ct + εα Id

= U
(
(1 + ε)�� + εα Id

)
U�

and

S�
t St + εα Id = K̃t − α Id + εα Id

= K 1/2
t Ĩt K

1/2
t − α Id + εα Id

� (1 − ε)Kt − α Id + εα Id

= (1 − ε)C�
t Ct .

Then simultaneously for all t = 1, . . . , T , we have

(S�
t St )

1/2 � √
1 + εU (��)1/2U� + √

εαU IdU
�

= √
1 + εX1/2

t + √
εα Id

(6)

and

(S�
t St )

1/2 = (S�
t St )

1/2 + √
εα Id − √

εα Id

� (
(S�

t St ) + εα Id
)1/2 − √

εα Id

� √
1 − εX1/2

t − √
εα Id .

(7)

Then we consider bounding the first term in the upper
bound of Lemma 1. Let X̃t denote S�

t St . Simultaneously for
all t = 1, . . . , T , we have

B�t+1(β
∗,β t+1) − B�t (β

∗,β t+1)

= 1

2

〈
β∗ − β t+1, (X̃

1/2
t+1 − X̃1/2

t )(β∗ − β t+1)
〉

≤ 1

2

〈
β∗ − β t+1,

√
1 + εX1/2

t+1(β
∗ − β t+1)

〉

− 1

2

〈
β∗ − β t+1,

√
1 − εX1/2

t )(β∗ − β t+1)
〉

+ 1

2

〈
β∗ − β t+1, 2

√
εα Id(β

∗ − β t+1)
〉

= 1

2

〈
β∗ − β t+1,

√
1 + εX1/2

t+1(β
∗ − β t+1)

〉

− 1

2

〈
β∗ − β t+1,

√
1 − εX1/2

t )(β∗ − β t+1)
〉

+ √
εα‖(β∗ − β t+1)‖22

≤ 1

2
‖β∗ − β t+1‖22 tr(X1/2

t+1 − X1/2
t )

+ ε

4

〈
β∗ − β t+1, (X

1/2
t+1 + X1/2

t )(β∗ − β t+1)
〉

+ √
εα‖(β∗ − β t+1)‖22

where the first inequality is due to (6), (7) and the last inequal-
ity has been proved in the proof of Theorem 1.

Thus, we can get

T−1∑

t=1

[
B�t+1(β

∗,β t+1) − B�t (β
∗,β t+1)

]

≤ 1

2
max
t≤T

‖β∗ − β t‖22 tr(X1/2
T ) − 1

2
‖β∗ − β1‖22 tr(X1/2

1 )

+ ε

2
max
t≤T

‖β∗ − β t‖22
T∑

t=1

‖X1/2
t ‖

− ε

4
‖β∗ − β1‖22 tr(X1/2

1 )

+ √
εα(T − 1)max

t≤T
‖β∗ − β t‖22.

(8)

Note that β1 = 0, then

B�1(β
∗,β1) = 1

2

〈
β∗, (σ Id + X̃1/2

1 )β∗〉

≤ 1

2
σ‖β∗‖22 + 2 + ε

4
‖β∗‖22 tr(X1/2

1 )

+ 1

2

√
εα‖β∗‖22.

(9)

Before considering the upper bound of
∑T

t=1 ‖ f ′
t (β t )‖2�∗

t
,

we need to derive the upper bound of H−1
t .

Let the SVD of S�
t be S�

t = U�V� where U ∈
R
d×d , � ∈ R

d×d , V ∈ R
t×d . We also have, for all t =

1, . . . , T ,

Ht = σ Id + (S�
t St )

1/2 = U
(
σ Id + (��)1/2

)
U�

� U
(
α Id + (��)

)1/2
U� = (α Id + S�

t St )
1/2

due to σ ≥ √
α ≥

√
λi (S�

t St ) + α −
√

λi (S�
t St ) for all

i = 1, . . . , d.
Then according to Corollary 2, with probability at least

1 − δ, simultaneously for all t = 1, . . . , T ,
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H−1
t � (

(α Id + S�
t St )

1/2)−1 = (
(K 1/2

t Ĩt K
1/2
t )−1)1/2

� 1√
1 − ε

(K−1
t )1/2 = 1√

1 − ε

(
(α Id + Xt )

−1)1/2.

Thus, we can get

‖ f ′
t (β t )‖2�∗

t
= 2

〈
gt , H−1

t gt
〉

≤ 2√
1 − ε

〈
gt ,

(
(α Id + Xt )

−1)1/2gt
〉

= 2l ′(β�
t xt )

2

√
1 − ε

〈
xt , (X

†
t )

1/2xt
〉
.

According to Lemma 2, we have

T∑

t=1

‖ f ′
t (β t )‖2�∗

t

≤ 2√
1 − ε

max
t≤T

l ′(β�
t xt )

2
T∑

t=1

〈
xt , (X

†
t )

1/2xt
〉

≤ 4√
1 − ε

max
t≤T

l ′(β�
t xt )

2 tr(X1/2
T ).

(10)

We complete the proof by substituting (8), (9) and (10) into
Lemma 1.

A.4 Proof of Corollary 1

Let Ct = U�V� be the singular value decomposition of Ct .
Notice that U ∈ R

t×r , �V� ∈ R
r×d . According to Theo-

rem 3, we have if τ = �(
r+log(1/δ)

ε2
), then simultaneously

∀x ∈ R
r , with probability 1 − δ,

(1 − ε)‖Ux‖22 ≤ ‖RtUx‖22 ≤ (1 + ε)‖Ux‖22

Let y ∈ R
d be arbitrary vector, then Cty = U�V�y = Ux

where x = �V�y ∈ R
r .

Then we have

y�S�
t Sty = y�C�

t R�
t RtCty = ‖RtUx‖22

≤ (1 + ε)‖Ux‖22 = (1 + ε)y�C�
t Cty

and

y�S�
t Sty = y�C�

t R�
t RtCty = ‖RtUx‖22

≥ (1 − ε)‖Ux‖22 = (1 − ε)y�C�
t Cty.

Then, we have (1 − ε)C�
t Ct � S�

t St � (1 + ε)C�
t Ct with

probability 1 − δ, provided τ = �(
r+log(1/δ)

ε2
). Using the

union bound, we have if τ = �(
r+log(T /δ)

ε2
), with probability

1 − δ, simultaneously for all t = 1, . . . , T ,

(1 − ε)C�
t Ct � S�

t St � (1 + ε)C�
t Ct .

A.5 Proof of Corollary 2

Define the SVD of C�
t as C�

t = U�V� where U ∈
R
d×d , � ∈ R

d×d , V ∈ R
t×d . Then we have Kt = U (α Id +

���)U� and

Ĩt = K−1/2
t K̃t K

−1/2
t = K−1/2

t (α Id + C�
t R�

t RtCt )K
−1/2
t

= U
(
(α Ip + ��)−1/2�V�R�

t Rt V�(α Id + ���)−1/2

+ α Id(α Id + ��)−1
)
U�

= U
(
(α Ip + ��)−1/2�RR��(α Id + ���)−1/2

+ α Id(α Id + ��)−1
)
U�

where R = V�R�
t ∈ R

d×τ is a Gaussian randommatrix due
to that V is an orthogonal matrix and R�

t is a Gaussian ran-

dommatrix. Let c2i = α

α+σ 2
ti
and s2i = σ 2

ti
α+σ 2

ti
. Then according

to Theorem 4, with probability at least 1 − δ,

(1 − ε)Id � Ĩt � (1 + ε)Id

provided τ ≥ r̃tσ 2
t1

cε2(α+σ 2
t1)

log 2d
δ

where the constant c is at

least 1/32. Using the union bound, we complete the proof.
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