Supplementary Material: Efficient Adaptive Online Learning via Frequent Directions

Yuanyu Wan, Nan Wei, Lijun Zhang
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
\{wanyy, zhanglj\}@lamda.nju.edu.cn, nwei@smail.nju.edu.cn

Figure 5: The comparison of running time among different algorithms for composite mirror descent (CMD) method

Figure 6: The comparison of running time cost by one epoch of each algorithm

A Additional Comparison of Running Time

In Section 4.2, we have performed online classification to evaluate the performance of our ADA-FD with two real world datasets: Gisette and Epsilon which are high-dimensional and dense. Figure 5 shows the comparison of running time among different algorithms for composite mirror descent method on both datasets. We find that our ADA-FD is faster than RADAGrAD and as fast as FD-SON when $d=5000$ and $d=2000$.

In Section 4.3, we have compared ADA-FD against ADAdiag, RadaGrad and FD-SON on training the classical convolutional neural networks (CNN). Figure 6 shows the comparison of running time cost by one epoch of each algorithm. We verify that our ADA-FD is faster than RADAGrad and as fast as FD-SON when applied to training CNN.

B Theoretical Analysis

In this section, we provide omitted proofs.

B. 1 Supporting Results

The following results are used throughout our analysis.

Lemma 1. (Variant of Proposition 2 in Duchi et al. [2011]). Let sequence $\left\{\boldsymbol{\beta}_{t}\right\}$ be generated by Algorithm 1. We have

$$
\begin{aligned}
R(T) \leq & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t-1}^{*}}^{2} \\
& +\frac{\sum_{t=1}^{T} \sqrt{\sigma_{t}}}{2 \eta} \max _{t \leq T}\left\|\boldsymbol{\beta}_{t+1}\right\|_{2}^{2}
\end{aligned}
$$

Lemma 1 can be regard as an variant of Proposition 2 in Duchi et al. [2011], when the condition $\Psi_{t+1}(\boldsymbol{\beta}) \geq \Psi_{t}(\boldsymbol{\beta})$ cannot be met due to $\mathrm{H}_{t+1} \nsucceq \mathrm{H}_{t}$ in this work. Lemma 1 can be derived from the proof of Proposition 2 in Duchi et al. [2011] with slight modification to deal with $\Psi_{t+1}(\boldsymbol{\beta}) \nsupseteq$ $\Psi_{t}(\boldsymbol{\beta})$. We include the proof for completeness.
Proof. The conjugate dual of $t \varphi(\boldsymbol{\beta})+\frac{1}{\eta} \Psi_{t}(\boldsymbol{\beta})$ is defined by

$$
\Phi_{t}^{*}(\mathbf{g})=\sup _{\boldsymbol{\beta}}\left\{\langle\mathbf{g}, \boldsymbol{\beta}\rangle-t \varphi(\boldsymbol{\beta})-\frac{1}{\eta} \Psi_{t}(\boldsymbol{\beta})\right\} .
$$

Thus, the gradient of $\Phi_{t}^{*}(\mathbf{g})$ can be calculated as

$$
\begin{equation*}
\nabla \Phi_{t}^{*}(\mathbf{g})=\arg \min _{\boldsymbol{\beta}}\left\{-\langle\mathbf{g}, \boldsymbol{\beta}\rangle+t \varphi(\boldsymbol{\beta})+\frac{1}{\eta} \Psi_{t}(\boldsymbol{\beta})\right\} \tag{8}
\end{equation*}
$$

Because $\frac{1}{\eta} \Psi_{t}(\boldsymbol{\beta})$ is $\frac{1}{\eta}$-strongly convex with respect to the nor$\mathrm{m}\|\cdot\|_{\Psi_{t}}$, we have

$$
\left\|\nabla \Phi_{t}^{*}(\mathbf{x})-\nabla \Phi_{t}^{*}(\mathbf{y})\right\|_{\Psi_{t}} \leq \eta\|\mathbf{x}-\mathbf{y}\|_{\Psi_{t}^{*}}
$$

which means the function Φ_{t}^{*} has η-Lipschitz continuous gradients with respect to $\|\cdot\|_{\Psi_{t}^{*}}$. Further, we have

$$
\begin{equation*}
\Phi_{t}^{*}(\mathbf{y}) \leq \Phi_{t}^{*}(\mathbf{x})+\left\langle\nabla \Phi_{t}^{*}(\mathbf{x}), \mathbf{y}-\mathbf{x}\right\rangle+\frac{\eta}{2}\|\mathbf{y}-\mathbf{x}\|_{\Psi_{t}^{*}}^{2} \tag{9}
\end{equation*}
$$

Both the identity (8) and the bound (9) were used in the proof of Proposition 2 in Duchi et al. [2011]. In order to complete the proof, we introduce an inequality

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\boldsymbol{\beta}_{t}\right)+\varphi\left(\boldsymbol{\beta}_{t}\right)-f_{t}\left(\boldsymbol{\beta}^{*}\right)-\varphi\left(\boldsymbol{\beta}^{*}\right) \\
\leq & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\sum_{t=1}^{T}\left\{\left\langle\mathbf{g}_{t}, \boldsymbol{\beta}_{t}\right\rangle+\varphi\left(\boldsymbol{\beta}_{t}\right)\right\}+\Phi_{T}^{*}\left(-\overline{\mathbf{g}}_{T}\right) . \tag{10}
\end{align*}
$$

from the proof of Proposition 2 in Duchi et al. [2011] again.

Due to

$$
\begin{aligned}
& \left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}-\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2}+\sqrt{\sigma_{t}} V V^{\top} \\
= & \mathrm{V} \Sigma^{\prime} \mathrm{V}^{\top}+\sqrt{\sigma_{t}} V V^{\top}-\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
\succeq & \mathrm{~V} \Sigma \mathrm{~V}^{\top}-\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
= & \left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}+\mathbf{g}_{t} \mathrm{~g}_{t}^{\top}\right)^{1 / 2}-\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
\succeq & 0
\end{aligned}
$$

we have

$$
-\Psi_{t}(\mathbf{x}) \leq-\Psi_{t-1}(\mathbf{x})+\frac{\sqrt{\sigma_{t}}}{2}\|\mathbf{x}\|_{2}^{2}
$$

Thus, we have

$$
\begin{aligned}
& \Phi_{T}^{*}\left(-\overline{\mathbf{g}}_{T}\right) \\
= & -\left\langle\overline{\mathbf{g}}_{T}, \boldsymbol{\beta}_{T+1}\right\rangle-T \varphi\left(\boldsymbol{\beta}_{T+1}\right)-\frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}_{T+1}\right) \\
\leq & -\left\langle\overline{\mathbf{g}}_{T}, \boldsymbol{\beta}_{T+1}\right\rangle-T \varphi\left(\boldsymbol{\beta}_{T+1}\right)-\frac{1}{\eta} \Psi_{T-1}\left(\boldsymbol{\beta}_{T+1}\right) \\
& +\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2} \\
\leq & \sup _{\boldsymbol{\beta}}\left(-\left\langle\overline{\mathbf{g}}_{T}, \boldsymbol{\beta}\right\rangle-(T-1) \varphi(\boldsymbol{\beta})-\frac{1}{\eta} \Psi_{T-1}(\boldsymbol{\beta})\right) \\
& -\varphi\left(\boldsymbol{\beta}_{T+1}\right)+\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2} \\
= & \Phi_{T-1}^{*}\left(-\overline{\mathbf{g}}_{T}\right)-\varphi\left(\boldsymbol{\beta}_{T+1}\right)+\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2}
\end{aligned}
$$

which contains an additional term $\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2}$ caused by $\mathrm{H}_{T} \nsucceq \mathrm{H}_{T-1}$ compared with Duchi et al. [2011].

Using the identity (8), the bound (9) and the inequality (10), we have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\boldsymbol{\beta}_{t}\right)+\varphi\left(\boldsymbol{\beta}_{t+1}\right)-f_{t}\left(\boldsymbol{\beta}^{*}\right)-\varphi\left(\boldsymbol{\beta}^{*}\right) \\
\leq & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\sum_{t=1}^{T}\left\{\left\langle\mathbf{g}_{t}, \boldsymbol{\beta}_{t}\right\rangle+\varphi\left(\boldsymbol{\beta}_{t+1}\right)\right\}+\Phi_{T-1}^{*}\left(-\overline{\mathbf{g}}_{T}\right) \\
& -\varphi\left(\boldsymbol{\beta}_{T+1}\right)+\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2} \\
\leq & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\sum_{t=1}^{T}\left\{\left\langle\mathbf{g}_{t}, \boldsymbol{\beta}_{t}\right\rangle+\varphi\left(\boldsymbol{\beta}_{t+1}\right)\right\}+\Phi_{T-1}^{*}\left(-\overline{\mathbf{g}}_{T-1}\right) \\
& -\left\langle\nabla \Phi_{T-1}^{*}\left(-\overline{\mathbf{g}}_{T-1}\right), \mathbf{g}_{T}\right\rangle+\frac{\eta}{2}\left\|\mathbf{g}_{T}\right\|_{\Psi_{T-1}^{*}}^{2}-\varphi\left(\boldsymbol{\beta}_{T+1}\right) \\
& +\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2} \\
= & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\sum_{t=1}^{T-1}\left\{\left\langle\mathbf{g}_{t}, \boldsymbol{\beta}_{t}\right\rangle+\varphi\left(\boldsymbol{\beta}_{t+1}\right)\right\}+\Phi_{T-1}^{*}\left(-\overline{\mathbf{g}}_{T-1}\right) \\
& +\frac{\eta}{2}\left\|\mathbf{g}_{T}\right\|_{\Psi_{T-1}^{*}}^{2}+\frac{\sqrt{\sigma_{T}}}{2 \eta}\left\|\boldsymbol{\beta}_{T+1}\right\|_{2}^{2} .
\end{aligned}
$$

By repeating the above steps, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\boldsymbol{\beta}_{t}\right)+\varphi\left(\boldsymbol{\beta}_{t+1}\right)-f_{t}\left(\boldsymbol{\beta}^{*}\right)-\varphi\left(\boldsymbol{\beta}^{*}\right) \\
\leq & \frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\mathbf{g}_{t}\right\|_{\Psi_{t-1}^{*}}^{2}+\sum_{t=1}^{T} \frac{\sqrt{\sigma_{t}}}{2 \eta}\left\|\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \\
& +\Phi_{0}^{*}\left(\overline{\mathbf{g}}_{0}\right)
\end{aligned}
$$

Note that $\varphi(\boldsymbol{\beta})=0$ and $\Phi_{0}^{*}(0)=0$. We complete the proof.

Lemma 2. (Proposition 3 in Duchi et al. [2011]). Let sequence $\left\{\boldsymbol{\beta}_{t}\right\}$ be generated by Algorithm 2. We have

$$
\begin{aligned}
R(T) \leq & \frac{1}{\eta} \sum_{t=1}^{T-1}\left[B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)\right] \\
& +\frac{1}{\eta} B_{\Psi_{1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{1}\right)+\frac{\eta}{2} \sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2} .
\end{aligned}
$$

Lemma 3. (Lemma 10 in Duchi et al. [2011]) Let $\mathrm{G}_{t}=$ $\sum_{i=1}^{t} \mathbf{g}_{i} \mathbf{g}_{i}^{\top}$ and A^{\dagger} denote the pseudo-inverse of A , then

$$
\sum_{t=1}^{T}\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{t}^{1 / 2}\right)^{\dagger} \mathbf{g}_{t}\right\rangle \leq 2 \sum_{t=1}^{\top}\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{T}^{1 / 2}\right)^{\dagger} \mathbf{g}_{t}\right\rangle=2 \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right)
$$

Lemma 4. (Derived From Theorem 3.1 and its Proof in Ghashami et al. [2016]) Let $\Delta_{t}=\sum_{i=1}^{t} \sigma_{i}$. In Algorithm 1 and $2, \mathrm{~S}_{t}$ is the sketch of the input C_{t} produced by frequent directions. Then for any t and $k<\tau$,

$$
\mathrm{C}_{t}^{\top} \mathrm{C}_{t} \succeq \mathrm{~S}_{t}^{\top} \mathrm{S}_{t} \succeq \mathrm{C}_{t}^{\top} \mathrm{C}_{t}-\Delta_{t} \mathrm{I}_{p}
$$

and

$$
\Delta_{t} \leq\left\|\mathrm{C}_{t}-\mathrm{C}_{t}^{k}\right\|_{F}^{2} /(\tau-k)
$$

where C_{t}^{k} denotes the minimizer of $\left\|\mathrm{C}_{t}-\mathrm{C}_{t}^{k}\right\|_{F}$ over all rank k matrices.

B. 2 Proof of Theorem 1

We first consider $\frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right)$ in the upper bound of Lemma 1. We have

$$
\begin{align*}
\frac{1}{\eta} \Psi_{T}\left(\boldsymbol{\beta}^{*}\right) & =\frac{1}{2 \eta}\left\langle\boldsymbol{\beta}^{*},\left(\delta \mathrm{I}_{d}+\left(\mathrm{S}_{T}^{\top} \mathrm{S}_{T}\right)^{1 / 2}\right) \boldsymbol{\beta}^{*}\right\rangle \\
& \leq \frac{\delta}{2 \eta}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}+\frac{1}{2 \eta}\left\langle\boldsymbol{\beta}^{*},\left(\mathrm{C}_{T}^{\top} \mathrm{C}_{T}\right)^{1 / 2} \boldsymbol{\beta}^{*}\right\rangle \\
& \leq \frac{\delta}{2 \eta}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}+\frac{1}{2 \eta} \lambda_{\max }\left(\mathrm{G}_{T}^{1 / 2}\right)\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2} \tag{11}\\
& \leq \frac{\delta}{2 \eta}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}+\frac{1}{2 \eta} \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right)\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2}
\end{align*}
$$

Before considering $\frac{\eta}{2} \sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t-1}^{*}}^{2}$, we need derive the lower bound of H_{t-1}. Let $c=\frac{\delta}{\left\|\mathbf{g}_{t}\right\|_{2}+\sqrt{\Delta_{t-1}}}$. If $c<1$, we
have

$$
\begin{aligned}
\mathrm{H}_{t-1} & =\delta \mathrm{I}_{d}+\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
& \succeq c\left(\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\sqrt{\Delta_{t-1}} \mathrm{I}_{d}+\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2}\right) \\
& \succeq c\left(\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\left(\Delta_{t-1} \mathrm{I}_{d}+\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2}\right) \\
& \succeq c\left(\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\left(\mathrm{C}_{t-1}^{\top} \mathrm{C}_{t-1}\right)^{1 / 2}\right) \\
& \succeq c\left(\mathrm{C}_{t-1}^{\top} \mathrm{C}_{t-1}+\left\|\mathbf{g}_{t}\right\|_{2}^{2} \mathrm{I}_{d}\right)^{1 / 2} \\
& \succeq c\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
\end{aligned}
$$

where the second inequality is due to $\sqrt{\Delta_{t}}+x \geq \sqrt{\Delta_{t}+x^{2}}$ for any $x \geq 0$ and the third inequality is due to Lemma 4 . And in the other case $\delta \geq \sqrt{\Delta_{t-1}}+\left\|\mathbf{g}_{t}\right\|_{2}$, we have

$$
\begin{aligned}
\mathrm{H}_{t-1} & =\delta \mathrm{I}_{d}+\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
& \succeq\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\sqrt{\Delta_{t-1}} \mathrm{I}_{d}+\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
& \succeq\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\left(\Delta_{t-1} \mathrm{I}_{d}+\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2} \\
& \succeq\left\|\mathbf{g}_{t}\right\|_{2} \mathrm{I}_{d}+\left(\mathrm{C}_{t-1}^{\top} \mathrm{C}_{t-1}\right)^{1 / 2} \\
& \succeq\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
\end{aligned}
$$

Thus for any $\delta>0$, we have

$$
\mathrm{H}_{t-1} \succeq \min \left(1, \frac{\delta}{\left\|\mathbf{g}_{t}\right\|_{2}+\sqrt{\Delta_{t-1}}}\right)\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
$$

Then we have

$$
\begin{align*}
& \sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t-1}^{*}}^{2} \\
= & \sum_{t=1}^{T} 2\left\langle\mathbf{g}_{t},\left(\mathrm{H}_{t-1}\right)^{-1} \mathbf{g}_{t}\right\rangle \\
\leq & \sum_{t=1}^{T} 2 \max \left(1, \frac{\left\|\mathbf{g}_{t}\right\|_{2}+\sqrt{\Delta_{t-1}}}{\delta}\right)\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{t}^{\dagger}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle \\
\leq & 2 \max \left(1, \frac{\max _{t \leq T}\left\|\mathbf{g}_{t}\right\|_{2}+\sqrt{\Delta_{T}}}{\delta}\right) \sum_{t=1}^{T}\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{t}^{\dagger}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle \\
\leq & 4 \max \left(1, \frac{\max _{t \leq T}\left\|\mathbf{g}_{t}\right\|_{2}+\sqrt{\Delta_{T}}}{\delta}\right) \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right) \tag{12}
\end{align*}
$$

where the last inequality is due to Lemma 3.
We complete the proof by substituting (11) and (12) into Lemma 1.

B. 3 Proof of Theorem 2

According to Algorithm 2 and the property of frequent directions, we have

$$
\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}-\left(\mathrm{S}_{t-1}^{\top} \mathrm{S}_{t-1}\right)^{1 / 2}+\sqrt{\sigma_{t}} V V^{\top} \succeq 0
$$

which has been proved in the proof of Lemma 1.

Let $\widetilde{\mathrm{G}}_{t}=\mathrm{S}_{t}^{\top} \mathrm{S}_{t}$. Considering the first term in the upper bound of Lemma 2, we have

$$
\begin{aligned}
& B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right) \\
= & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\mathrm{H}_{t+1}-\mathrm{H}_{t}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1},\left(\widetilde{\mathrm{G}}_{t+1}^{1 / 2}-\widetilde{\mathrm{G}}_{t}^{1 / 2}\right)\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
& +\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}, \sqrt{\sigma_{t+1}} V V^{\top}\left(\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right)\right\rangle \\
\leq & \frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \lambda_{\max }\left(\widetilde{\mathrm{G}}_{t+1}^{1 / 2}-\widetilde{\mathrm{G}}_{t}^{1 / 2}+\sqrt{\sigma_{t+1}} V V^{\top}\right) \\
\leq & \frac{1}{2}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t+1}\right\|_{2}^{2} \operatorname{tr}\left(\widetilde{\mathrm{G}}_{t+1}^{1 / 2}-\widetilde{\mathrm{G}}_{t}^{1 / 2}+\sqrt{\sigma_{t+1}} V V^{\top}\right) .
\end{aligned}
$$

Note that $\boldsymbol{\beta}_{1}=\mathbf{0}$, we get

$$
\begin{align*}
& \sum_{t=1}^{T-1}\left[B_{\Psi_{t+1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)-B_{\Psi_{t}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{t+1}\right)\right]+B_{\Psi_{1}}\left(\boldsymbol{\beta}^{*}, \boldsymbol{\beta}_{1}\right) \\
\leq & \frac{1}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \operatorname{tr}\left(\widetilde{\mathrm{G}}_{T}^{1 / 2}-\widetilde{\mathrm{G}}_{1}^{1 / 2}\right) \\
& +\frac{\tau \sum_{t=2}^{\top} \sqrt{\sigma_{t}}}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2}+\frac{1}{2}\left\langle\boldsymbol{\beta}^{*}, \mathrm{H}_{1} \boldsymbol{\beta}^{*}\right\rangle \\
\leq & \frac{1}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right) \\
& +\frac{\tau \sum_{t=1}^{\top} \sqrt{\sigma_{t}}}{2} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2}+\frac{\delta}{2}\left\|\boldsymbol{\beta}^{*}\right\|_{2}^{2} \tag{13}
\end{align*}
$$

where we use Lemma 4 in the last inequality.
Before considering $\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2}$, we need derive the lower bound of H_{t}. If $\delta<\sqrt{\Delta_{t}}$, we have

$$
\begin{aligned}
\mathrm{H}_{t} & =\delta \mathrm{I}_{d}+\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} \succeq \frac{\delta\left(\sqrt{\Delta_{t}} \mathrm{I}_{d}+\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}\right)}{\sqrt{\Delta_{t}}} \\
& \succeq \frac{\delta\left(\Delta_{t} \mathrm{I}_{d}+\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2}}{\sqrt{\Delta_{t}}} \succeq \frac{\delta}{\sqrt{\Delta_{t}}}\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
\end{aligned}
$$

where the second inequality is due to $\sqrt{\Delta_{t}}+x>=$ $\sqrt{\Delta_{t}+x^{2}}$ for $x \geq 0$ and the third inequality is due to Lemma 4. And in the other case $\delta \geq \sqrt{\Delta_{t}}$, we have

$$
\begin{aligned}
\mathrm{H}_{t} & =\delta \mathrm{I}_{d}+\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} \succeq \sqrt{\Delta_{t}} \mathrm{I}_{d}+\left(\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} \\
& \succeq\left(\Delta_{t} \mathrm{I}_{d}+\mathrm{S}_{t}^{\top} \mathrm{S}_{t}\right)^{1 / 2} \succeq\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
\end{aligned}
$$

Thus for any $\delta>0$, we have

$$
\mathrm{H}_{t} \succeq \min \left(1, \frac{\delta}{\sqrt{\Delta_{t}}}\right)\left(\mathrm{C}_{t}^{\top} \mathrm{C}_{t}\right)^{1 / 2}
$$

Then we have

$$
\begin{align*}
\sum_{t=1}^{T}\left\|f_{t}^{\prime}\left(\boldsymbol{\beta}_{t}\right)\right\|_{\Psi_{t}^{*}}^{2} & =\sum_{t=1}^{T} 2\left\langle\mathbf{g}_{t},\left(\mathrm{H}_{t}\right)^{-1} \mathbf{g}_{t}\right\rangle \\
& \leq \sum_{t=1}^{T} 2 \max \left(1, \frac{\sqrt{\Delta_{t}}}{\delta}\right)\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{t}^{\dagger}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle \\
& \leq 2 \max \left(1, \frac{\sqrt{\Delta_{T}}}{\delta}\right) \sum_{t=1}^{T}\left\langle\mathbf{g}_{t},\left(\mathrm{G}_{t}^{\dagger}\right)^{1 / 2} \mathbf{g}_{t}\right\rangle \\
& \leq 4 \max \left(1, \frac{\sqrt{\Delta_{T}}}{\delta}\right) \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right) \tag{14}
\end{align*}
$$

where the last inequality is due to Lemma 3.
By combining (13) and (14), we have

$$
\begin{aligned}
R(T) \leq & \frac{\delta}{2 \eta}\left\|\boldsymbol{\beta}_{*}\right\|_{2}^{2}+\frac{1}{2 \eta} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2} \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right) \\
& +2 \eta \max \left(1, \frac{\sqrt{\Delta_{T}}}{\delta}\right) \operatorname{tr}\left(\mathrm{G}_{T}^{1 / 2}\right) \\
& +\frac{\tau \sum_{t=1}^{\top} \sqrt{\sigma_{t}}}{2 \eta} \max _{t \leq T}\left\|\boldsymbol{\beta}^{*}-\boldsymbol{\beta}_{t}\right\|_{2}^{2}
\end{aligned}
$$

