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Abstract. Temporal Link Prediction (TLP), as one of the highly con-
cerned tasks in graph mining, requires predicting the future link proba-
bility based on historical interactions. On the one hand, traditional meth-
ods based on node metrics, such as Common Neighbor, achieve satisfactory
performance in the TLP task. On the other hand, node metrics overly focus
on the global impact of nodes while neglecting the personalization of differ-
ent node pairs, which can sometimes mislead link prediction results. How-
ever, mainstream TLP methods follow the standard paradigm of learning
node embedding, entangling favorable and harmful node metric factors in
the representation, reducing the model’s robustness. In this paper, we pro-
pose a plug-and-play plugin called Node Metric Disentanglement, which
can apply to most TLP methods and boost their performance. It explicitly
accounts for node metrics and disentangles them from the embedding rep-
resentations generated by TLP methods. We adopt the attention mecha-
nism to reasonably select information conducive to the TLP task and inte-
grate it into the node embedding. Experiments on various state-of-the-art
methods and dynamic graphs verify the effectiveness and universality of
our NMD plugin.

Keywords: Dynamic Graphs · Temporal Link Prediction ·
Disentangled Representation Learning · Node Metric

1 Introduction

Graph data, particularly dynamic graphs, have grown exponentially in recent
years, arousing widespread attention from researchers and practitioners [25,27,
28]. Dynamic graphs can represent the changeable interactions of nodes with
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time elapsing in real-graph scenarios, such as social networks [23], academic net-
works [31], transaction networks [16,17], etc. One of the most challenging issues
related to dynamic graphs is temporal link prediction (TLP), which aims to esti-
mate the likelihood of paired nodes being connected in the future [6]. It helps
to track the dynamic characteristics and reveal the evolutionary patterns of the
system. Some applications of TLP tasks include analyzing community clusters
in social networks [5], revealing author collaboration trends in academic net-
works [15], and predicting commercial intercourse in transaction networks [18].

Traditional link prediction methods utilize the property metrics of nodes to
predict links, such as similarity-based algorithms using degree or common neigh-
bors [19]. Preferential Attachment [3] explicitly considers the degree centrality of
nodes. Several heuristic algorithms like the Jaccard Coefficient [2], Adamic Adar
Index [1], and Resource Allocation index [37] consider the common neighbors to
predict a connection. On the one hand, node metrics reflect the global impact
and promote link prediction in specific scenarios. For example, a new manuscript
may prefer papers with more citations in their references. On the other hand,
node metrics neglect the personalization of different node pairs, such as music
application users preferring niche songs over popular songs on the list. It is cru-
cial to handle node metrics information in link prediction tasks properly.

The interaction of many complex factors, including node metrics, usually
drives temporal link changes in dynamic graph systems. Existing state-of-the-art
methods, including GCN-GRU [29], EvolveGCN [25], DySAT [28], etc., predict
temporal link existence by learning node embedding from the ego network based
on various specific Graph Neural Networks. However, these TLP methods mix
different factors into a shared embedding representation space, which may intro-
duce harmful node metrics to temporal link prediction tasks. Numerous works
in multiple fields [21,34] show that disentangling various information factors in
embedding is conducive to better representation learning and model generaliza-
tion. It inspires us to disentangle node metrics from embedding representations
and integrate information conducive to link prediction into the embedding by a
fusion module. In this paper, we aim to design a disentanglement plugin that
can be applied to most TLP methods, disentangling node metric factors and
improving their performance on different dynamic graphs.

To this end, we propose a dual-branch framework consisting of a temporal
link prediction (TLP) branch and a node metric disentanglement (NMD) branch.
The former describes a general structural-temporal framework for existing TLP
methods, which can generate node representations based on historical graph
snapshots. The latter uses multiple optional types of node metrics as factors, such
as degree centrality, closeness centrality [8], PageRank [24], etc. We introduce
a similarity decoupling loss to disentangle the node representations of different
time slots under multiple metrics. It helps two branch focus on edge-level per-
sonalization and node-level global functionality, respectively. The TLP branch
is optimized for an edge-level classification objective, and the NMD branch is
optimized for a node-level regression objective. Finally, an attention-based fusion
module is adopted for the two sets of historical embedding obtained from the
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two branches, integrating information beneficial to the TLP task and exploring
fine-grained representations. Our contributions are summarized as follows:

– To the best of our knowledge, we are the first to consider the positive and neg-
ative effects of node metric factors in representation learning on the temporal
link prediction task.

– We propose a Node Metric Disentanglement (NMD) plugin that can disentan-
gle node metrics in most TLP methods and generate fine-grained and more
beneficial representations by the attention mechanism.

– Experiments on five dynamic graphs validate the universal improvement of
our NMD plugin for existing SOTA methods. Elaborate ablation studies fur-
ther verify the effectiveness of different components.

2 Related Work

Temporal Link Prediction. Some heuristics strategies based on graph topol-
ogy are proposed to solve link prediction tasks, such as Katz [10], singular value
decomposition (SVD) [7], and non-negative matrix factorization (NMF) [36].
Learning low-dimensional embedding on dynamic graphs is an emerging topic
under investigation [4]. Dyngraph2Vec [9] uses recurrent neural networks (RNN)
to learn each vertex’s complex transformation. Inspired by the progress of Graph
Neural Networks (GNNs) [12], EvolveGCN [25] trains RNN parameters at each
time step to dynamically update GCN parameters. STGSN [22] introduces the
attention mechanism to model social networks’ spatial and temporal dynamicity.

Disentangled Representation Learning. [20] proposes a disentangled mul-
tichannel convolutional layer and devises a neighborhood routing mechanism
to disentangle the underlying factors behind a graph. [33] establishes a set of
intent-aware graphs and chunked representations, disentangling representations
of users and items at the granularity of user intents. [21] proposes disentangled
variational autoencoder and a beam-search strategy to explicitly models the sep-
aration of macro and micro factors. [34] utilizes a mechanism that incorporates
the micro-and macro-disentanglement in knowledge graphs.

Node Metrics. Centrality is a classical measure of nodes in complex networks,
including k-shell decomposition [13], closeness centrality [8], or betweenness cen-
trality [8]. [32] uses the concept of diversity entropy to describe the relative
frequency of access received by nodes and study the internal and external acces-
sibility of nodes. [14] defines dynamic influence as the leading left eigenvector
of a characteristic matrix that encodes the interaction between graph topology
and dynamics. Adamic Adar index [1] is a similarity measure that assigns higher
importance to common neighbors with lower degrees in a graph representation.

3 Method

3.1 Problem Statement

Most dynamic networks can be described as a weighted temporal graph G(V,E)
with a node set V = {vi}N

i=1 and an edge set E ⊆ |V | × |V |, where N = |V |
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is the number of unique vertices. An edge between nodes vi and vj with weight
wij ∈ R at time step t ∈ R+ is written as eij = (vi, vj , t, wij) ∈ E. A graph G
can be split into a series of snapshots G = {G1, ..., GT }. We transform Et into
an adjacency matrix At ∈ RN×N according to the rule: (At)ij = wij otherwise
0. The d-dimensional node feature matrix in Gt is defined as Xt ∈ RN×d.

Temporal Link Prediction (TLP) task predicts future link status based on
historical snapshots. Formally, given δ snapshots {Aτ ,Xτ}t−1

τ=t−δ at time t, our
goal is to learn a function f(·) that predicts the adjacency matrix At:

{Aτ ,Xτ}t−1
τ=t−δ

f(·)−→ At, t ∈ {1 + δ, ..., T} (1)

3.2 Temporal Link Prediction Branch

The general paradigm of TLP methods is a sequential combination of a multi-
layer structural encoder, a temporal encoder, and a link predictor [27]. For each
historical snapshot Gτ at time t, an l-th layer of the structural encoder takes
the adjacency matrix Aτ and the (l − 1)-th output embedding Zl−1

τ as input:

Zl
τ = StructuralEncoderl(Aτ , Zl−1

τ ), l = 1, ..., L, (2)

where L is the number of layers, and the initial embedding matrix comes from
the raw node features, i.e. Z0

τ = Xτ . Then a temporal encoder combines the L-th
layer embedding of δ historical snapshots {ZL

τ }t−1
τ=t−δ and generates the current

snapshot’s node embedding Zt for downstream tasks:

Zt = TemporalEncoder(ZL
t−1, ..., Z

L
t−δ). (3)

The TLP task can be regarded as a binary classification of positive and
negative edges. As for an edge eij with its label y = (At)ij ∈ {0, 1}, we use the
following classification layer to obtain the prediction probability pij ∈ [0, 1]:

pt
ij = σ

(
MLP

(
zt

i||zt
j

))
, (4)

where σ is the softmax function, MLP is a multi-layer perceptron (MLP), and ||
represents the concatenation operation. zt

i = (Zt)i ∈ Rd1 is the d1-dimensional
embedding of node vi, i.e., the i-th row of the embedding matrix Zt. The TLP
branch calculates the link prediction loss at t time by the Cross-Entropy (CE):

Lt
TLP = K

∑

eij∈E+
t

− log pt
ij −

∑

eij∈E−
t

1 − log pt
ij , (5)

where E+
t and E−

t are the set of positive and negative edges, respectively. K
balances the loss of E+

t and E−
t , usually set to the ratio of |E+

t | and |E−
t |.

3.3 Node Metric Disentanglement Branch

As shown in Fig. 1, the proposed node metric disentanglement (NMD) branch
includes a structural encoder with the same architecture as the TLP branch,
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Fig. 1. Framework of our NMD plugin based on the structural-temporal paradigm.
TLP Branch, applicable to any TLP method, predicts the link status at time t based on
δ snapshots {Aτ , Xτ}t−1

τ=t−δ. NMD Branch generates node-level embedding {HL
τ }t−1

τ=t−δ

by predicting temporal node metrics {dm
τ }t

τ=t−δ. It disentangles the node represen-
tations of different time slots by the decoupling loss Lt

DIS and integrates beneficial
factors into {ZL

τ }t−1
τ=t−δ by an attention-based fusion module.

multiple MLP predictors, and an attention-based fusion module. It uses multi-
ple self-selectable node metrics as decoupling factors, such as degree centrality,
closeness centrality [8], PageRank [24], etc.

Formally, given a node metric m ∈ M, M is a set of various node metrics
selected according to different contexts. We calculate the node metric vector
dm

τ ∈ R|V | for each historical snapshot at time t and obtain the set of node
metrics {dm

τ }t
τ=t−δ.

Then, we perform regression optimization on multiple temporal node metrics
to explicitly model metric-aware representations. Precisely similar to the process
described in Eq. 2, an L-layer structural encoder generates the representation of
nodes in each historical snapshot Gτ a time t:

H l
τ = StructEncoderl(Aτ ,H l−1

τ ), l = 1, ..., L, (6)

where H l
τ is the l-th layer embedding matrix, and H0

τ is initialized with the raw
feature matrix Xt. Our NMD branch tries to predict the node metric dm

τ+1 of
the next snapshot Gτ+1 by each historical embedding HL

τ :

d̂m
τ+1 = MLPm(HL

τ ), τ = t − δ, ..., t, (7)

where MLPm is a multi-layer perceptron predictor, which can project HL
τ into

representation spaces of different node metrics. Naturally, we calculate the aver-
age MSE (Mean Squared Error) between the ground-truth metric dm

τ+1 and the
predicted metric d̂m

τ+1 over the period [t − δ, t]:

Lt
NMD =

1
|M|

∑

m∈M

1
δ

t−1∑

τ=t−δ

MSE
(
dm

τ+1, d̂
m
τ+1

)
, (8)
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where Lt
NMD is our NMD branch loss at time t, M is the set of multiple optional

types of node metrics, and δ is the number of historical snapshots. The above
prediction strategy fully utilizes the multiple historical snapshots’ information,
favoring each historical embedding to establish a non-linear relationship with the
node metric of the following snapshot. Our NMD branch builds a fine-grained
metric-aware embedding {HL

τ }t−1
τ=t−δ that can represent multiple metric factors

of different periods by the regression optimization.
The TLP branch’s embedding is mixed with many complex factors, including

node metrics. Considering that node metrics may mislead the link prediction
results, we devise a decoupling loss to disentangle them from {ZL

τ }t−1
τ=t−δ. It

can use statistical measures such as distance correlation or mutual information
as a regularizer to encourage specialization in representation space. Distance
correlation can characterize the independence of any two paired vectors in their
linear and nonlinear relationships. Here we calculate the decoupling loss Lt

DIS

by the commonly-used cosine similarity:

Lt
DIS =

t−1∑

τ=t−δ

N∑

i=1

zτ
i · hτ

i

||zτ
i ||||hτ

i || (9)

where zτ
i = (Zτ )i ∈ Rd1 , hτ

i = (Hτ )i ∈ Rd1 , and || · || is the vector norm.
Under the guidance of Lt

DIS , the representation function of {ZL
τ }t−1

τ=t−δ and
{HL

τ }t−1
τ=t−δ are deconstructed and refined. The former focuses more on person-

alized aggregation information of the node’s multi-hop neighbors, while the lat-
ter pays more attention to the global impact of the node itself. If node-level
and edge-level factors are highly intertwined without processing, the inconsis-
tency between the TLP and metric regression tasks will lead to a seesaw phe-
nomenon [30]. The negative correlation information can degrade the representa-
tion ability, thereby damaging performance. In short, the TLP branch and the
NMD branch are devoted to generating representations that do not contain mutual
information as much as possible, achieving the disentanglement of the two levels
of information.

3.4 Attention-Based Fusion Module

In this section, we need to integrate beneficial information of the metric-aware
representation {HL

τ }t−1
τ=t−δ into the TLP embedding {ZL

τ }t−1
τ=t−δ, as it only leaves

non-metric information after disentangling. We employ the attention mechanism
to learn the fusion mode between {ZL

τ }t−1
τ=t−δ and {HL

τ }t−1
τ=t−δ, which can discard

the damaging information and capture meaningful information.
For each historical snapshot Gτ at time t, we first learn N nodes’ attention

vector aZ ,aH ∈ RN×1:

aZ = tanh(ZL
τ W )q,aH = tanh(HL

τ W )q, (10)

where tanh is a activation function, W ∈ Rd1×d2 and q ∈ Rd2×1 are learnable
weights. As for node vi ∈ V , we normalize its two attention coefficients aZ

i , aH
i

into 2-dimensional probability pi ∈ R2 by the softmax function.
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pi = softmax([aZ
i , aH

i ]), i = 1, ..., N, (11)

Then we linearly combine vi’s two embeddings, zτ
i = (Zτ )i ∈ Rd1 and hτ

i =
(Hτ )i ∈ Rd1 , with the probability pi = [pi0, pi1]:

z̃τ
i = pi0zτ

i + pi1hτ
i , i = 1, ..., N, (12)

where z̃τ
i is vi’s embedding after fusing, which Eq. 4 will use to predict the

probability of temporal links.
Finally, our method collaboratively infers temporal links and node metrics

and jointly optimizes the loss functions of two branches to simulate network
evolution in an interdependent manner. The total loss is summarized as follows:

L =
t=T∑

t=1+δ

Lt
TLP + αLt

NMD + βLt
DIS , (13)

where δ is the number of snapshots, Lt
TLP and Lt

NMD are the TLP and NMD
branch’s losses, Lt

DIS is the decoupling loss, and α and β are trade-off weights.

4 Experiment

4.1 Experimental Setup

Datasets and Baselines. We conducted experiments on five dynamic graphs,
including UCI [23], BC-Alpha [16,17], BC-OTC [16,17], DBLP [31], and APS1.
Aiming to evaluate our NMD plugin’s broad applicability, the compared baselines
include three different types of TLP methods: one RNN-Based method (Dyn-
graph2Vec [9]), two GCN-Based methods (GCN-GRU [29], EvolveGCN [25]),
and three Attention-Based methods (STGSN [22], DySAT [28], HTGN [35]).

Training Details. The common-used deep learning framework PyTorch [26] is
adopted to implement all our experiments. We split the datasets into the train-
ing, validation, and testing set with ratios 7:1:2 chronologically. Referring to
the general setting of the link prediction tasks, we randomly select 100 negative
samples for each edge in each snapshot during data loading. The parameters of
model architectures are fixed: all methods’ structural encoder layers are 2, and
the hidden layer dimension is 128. For a fair comparison, the downstream classi-
fier for all methods is a trainable two-layer perceptron. The Adam optimizer [11]
and an early-stopping strategy are adopted for model training.

4.2 Overall Performance

Table 1 shows the performance comparison and improvement of the original TLP
methods and our method on five dynamic graphs. The default node metric of
the experiment is degree centrality. Our NMD plugin achieves significant and
1 https://journals.aps.org/datasets.

https://journals.aps.org/datasets
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Table 1. AUC (%) performance of the original temporal link prediction methods
(Base) and our method (Ours) on five dynamic graphs. The Gain (%) row reports
the mean gain percentage of the six baselines. The reported results are the average
scores on all timestamps of the testing set.

Case UCI BC-Alpha BC-OTC DBLP APS
Base Ours Base Ours Base Ours Base Ours Base Ours

Dyn2Vec 83.62±1.03 89.08±1.1289.08±1.1289.08±1.12 83.18±1.00 87.56±1.0187.56±1.0187.56±1.01 75.93±1.01 84.24±1.0684.24±1.0684.24±1.06 72.31±1.22 74.75±1.2674.75±1.2674.75±1.26 71.71±0.18 76.24±0.2176.24±0.2176.24±0.21

GCN-GRU 86.73±1.10 87.55±1.1187.55±1.1187.55±1.11 85.43±1.26 91.57±1.4391.57±1.4391.57±1.43 76.06±1.10 85.06±1.4185.06±1.4185.06±1.41 73.33±1.02 74.73±1.0274.73±1.0274.73±1.02 73.17±0.14 78.61±0.1778.61±0.1778.61±0.17

EvolveGCN 87.09±1.18 89.95±1.1289.95±1.1289.95±1.12 82.37±1.29 84.82±1.4684.82±1.4684.82±1.46 81.05±1.34 82.65±1.2982.65±1.2982.65±1.29 75.06±0.10 77.02±0.1077.02±0.1077.02±0.10 72.35±0.12 77.25±0.1377.25±0.1377.25±0.13

STGSN 88.04±1.06 90.76±1.0290.76±1.0290.76±1.02 80.48±1.03 83.79±1.0383.79±1.0383.79±1.03 78.85±1.09 81.92±1.1381.92±1.1381.92±1.13 78.39±0.09 79.62±0.0879.62±0.0879.62±0.08 71.14±0.09 77.91±0.1177.91±0.1177.91±0.11

DySAT 87.51±0.04 89.61±1.1489.61±1.1489.61±1.14 82.19±1.16 85.96±1.3385.96±1.3385.96±1.33 78.24±1.15 83.19±1.2583.19±1.2583.19±1.25 73.89±1.08 75.60±0.2175.60±0.2175.60±0.21 72.14±0.14 78.77±0.2478.77±0.2478.77±0.24

HTGN 88.60±0.15 91.36±1.1691.36±1.1691.36±1.16 90.84±1.18 94.31±1.3294.31±1.3294.31±1.32 80.97±1.17 84.94±1.2484.94±1.2484.94±1.24 73.44±0.12 78.05±0.2678.05±0.2678.05±0.26 73.62±0.19 79.97±0.2979.97±0.2979.97±0.29

Gain(%) +2.79 +3.92 +5.15 +2.22 +5.77

consistent improvements in six different baselines, with the mean gain of 2.79%,
3.92%, 5.15%, 2.22%, and 5.77% on five datasets, respectively. Part of the reason
for our success is a more fine-grained embedding representation than baselines,
which fully exploits the advantages of node metric factors by the decoupling loss
and the attention-based fusion module. It reveals that our work is conducive to
promoting the development of link predictions and recommender systems.

Table 2. AUC(%) scores and performance improvement of three loss terms and three
node metrics on UCI and BC-Alpha, where DG, CN, and PG are abbreviations for
degree centrality, closeness centrality, and PageRank, respectively.

Loss Term Node Metric UCI BC-Alpha

Lt
TLP Lt

NMD Lt
DIS DG CN PG Dyn2Vec GCN-GRU DySAT Dyn2Vec GCN-GRU DySAT

83.62 86.73 87.51 83.18 85.43 82.19
86.46 (+2.84) 83.34 (−3.39) 88.38 (+0.87) 86.66 (+3.48) 89.57 (+4.14) 83.43 (+1.24)
89.08 (+5.46) 87.55 (+0.82) 89.61 (+2.10) 87.56 (+4.38) 91.57 (+6.14) 85.96 (+3.77)
88.65 (+5.03) 87.36 (+0.63) 89.44 (+1.93) 89.03 (+5.85) 92.05 (+6.62) 83.79 (+1.60)
89.48 (+5.86) 88.32 (+1.59) 90.76 (+3.25) 84.68 (+1.50) 90.47 (+5.04) 85.56 (+3.37)
90.65 (+7.03) 88.23 (+1.50) 91.41 (+3.90) 89.13 (+5.95) 93.79 (+8.36) 87.98 (+5.79)
90.08 (+6.46) 89.86 (+3.13) 92.14 (+4.63) 89.71 (+6.53) 93.73 (+8.30) 89.06 (+6.87)
90.16 (+6.45) 90.06 (+3.33) 93.33 (+5.82) 90.29 (+7.11) 94.18 (+8.75) 89.57 (+7.38)

4.3 Ablation Study

To intuitively understand the effect of each part of our NMD plugin, we imple-
ment the ablation experiment consisting of three loss terms and three kinds of
node metrics. The former includes Lt

TLP ,Lt
NMD, and Lt

DIS . The latter includes
degree centrality (DG), closeness centrality (CN), and PageRank (PR). Table 2
shows the AUC scores and performance improvement under different experimen-
tal settings on UCI and BC-Alpha datasets.

Using only Lt
NMD without Lt

DIS may lead to performance degradation, such
as a decrease of 3.39% of the GCN-GRU baseline on the UCI dataset. It indi-
cates a seesaw phenomenon [30] in the TLP and NMD tasks, i.e., a negative
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correlation between the edge-level and node-level tasks, affecting the quality of
the fused embedding. Hence we decouple the global properties of the nodes from
the edge-level embedding of the TLP branch by the decoupling loss Lt

DIS , which
brings 0.82% improvements of the GCN-GRU baseline on the UCI dataset. It
emphasizes the importance of disentangling node metric factors. In addition, the
performance of different node metrics is very similar due to the general consis-
tency of node attribute information in graph data. From the results, we find that
our plugin achieves greater relative improvement as the number of node metric
factors increases. We conjecture that disentangling more node metrics can obtain
more fine-grained embedding with better representation ability.

Fig. 2. AUC comparison over the degree centrality of node groups on UCI and
BC-Alpha datasets, where the background histograms indicate the number of
nodes (#Nodes) involved in each group. The dotted line and the solid line represent
the TLP baselines and our improved methods, respectively.

4.4 Performance on Different Node Groups

To carefully explore the effectiveness of our plugin on nodes with different metrics
values, we divide the node set into five groups according to the degree central-
ity of nodes. Figure 2 displays the AUC performance on five node groups with
different levels on UCI and BC-Alpha datasets. As for the two GCN-Based meth-
ods (GCN-GRU and EvolveGCN), the performance improvement of medium to
high degree nodes is more significant than those with low degree. While as for
the two Attention-Based methods (STGSN and DySAT), the performance of
the five groups of nodes has significantly improved. One possible reason is that
the attention mechanism is better at capturing the correlation between node
embedding and metrics in the historical link state to promote the generation
of high-quality representations. In short, our plugin consistently promotes the
representation learning of node groups with different metrics distribution ranges.
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Fig. 3. Parameter sensitivity of six baselines based on our plugin. Methods are indexed
in the following order: Dyn2vec, GCN-GRU, EvolveGCN, STGSN, DySAT, and HTGN.

4.5 Parameter Sensitivity

In this section, our parameter sensitivity experiment includes the number of his-
torical snapshots (#Snapshots) and the trade-off weights α and β. The three
hyper-parameters’ default settings are 5, 0.50, and 1e−4. Figure 3 shows the per-
formance comparison of different values over six baselines with our plugin on
the UCI dataset. Firstly, most methods benefit from more historical snapshots
because of more temporal information. Secondly, the trade-off weight α, defined
as Eq. 13, controls the relative importance of the edge-level TLP loss and the
node-level NMD loss in the dual-branch framework. The higher α performance is
better, which proved that the NMD plugin achieved our expected effect, namely,
learning fine-grained node embedding. Finally, the performance of different val-
ues of β is similar. It reflects that the decoupling loss can steadily improve the
diversity and specialization of embedding representations.

5 Conclusion

In this paper, we point out the benefits and harmfulness of node metric factors in
temporal link prediction representation. The proposed NMD plugin disentangles
node metrics from the node embedding generated by most TLP methods. We
further devise an attention-based module to explore fine-grain and high-quality
embedding representation. In the future, we will extend our auxiliary compo-
nents to predict continuous-valued timestamped links and explore the problem
of mutual promotion and restriction between node-level and edge-level tasks.
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