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Recently, recommendation algorithms have been widely used in many e-commerce platforms to recom-
mend items to users on the basis of their preferences to improve selling efficiency. Matrix factorization
methods which extract latent features of users and items by decomposing the rating matrix have
achieved success in rating prediction. But almost all of these algorithms are designed to fit the rating
matrix directly to get the latent features and ignore the user-item relationship in feature space. To this
end, in this paper, we propose a recommendation in feature space sphere (RFSS) which takes into account
the relationship between users and items in feature space. Different from the conventional latent feature
based recommendation algorithms, the proposed algorithm supposes that if a user likes an item, the user
is close to the item in feature space. Meanwhile, the closer a user and an item are in feature space, the
higher the predicted rating will be. And an adaptive user-dependent coefficient is introduced to map
the user-item distances to the predicted ratings. Extensive experiments on four real-world datasets have
been conducted, the results of which show that our proposed method outperforms the state-of-the-art
recommendation algorithms.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Due to the rapid growth of online markets/services, an increas-
ing amount of merchandises/services can be sold/provided in these
platforms nowadays. This makes it difficult for users to find some-
thing interesting or useful in a short time. As a consequence, rec-
ommendation algorithm emerges as required and has been
widely used in many online markets/services like Amazon
(Linden et al., 2003), YouTube (Davidson et al., 2010), Twitter
(Elmongui et al., 2015), Tmall (Zhong et al., 2015) and Yahoo!
(Koenigstein et al., 2011), to improve selling efficiency and
enhance user experience. The function of recommendation algo-
rithm is to recommend items to target users they are most likely
interested in based on the huge amounts of data about user beha-
viour. Recommendation algorithm usually predicts the ratings to
non-purchased items and presents the recommendation lists to
the target users in the descending order of the predicted ratings
(Guo et al., 2014). On the whole, the traditional recommendation
algorithms can be classified into three types: collaborative filter-
ing, content-based recommendation and hybrid recommendation
(Jannach et al., 2013). Among them, collaborative filtering, one of
the most successful technologies in personalized recommendation,
can be separated into memory-based methods and model-based
methods. And the basic idea of collaborative filtering is that a user
prefers the items liked by the users with similar interest. In partic-
ular, matrix factorization is one of the most common model-based
collaborative filtering algorithms.

Over the past decade, matrix factorization has attracted an
increasing amount of attention. Matrix factorization technique
usually learns the latent features of both users and items from
the user-item rating matrix, and then predicts the ratings to non-
purchased items according to user and item latent features. The
most remarkable matrix factorization algorithm is probabilistic
matrix factorization (PMF) (Salakhutdinov and Mnih, 2007).
Another remarkable method is Non-negative Matrix Factorization
(NMF) (Lee and Seung, 2000), where the constraint that all the fea-
tures should be positive is applied. A sparse linear method (SLIM)
(Ning and Karypis, 2011) uses sparse aggregation coefficient to
make Top-N recommendation with high quality and efficiency
concurrently.

Although matrix factorization methods have achieved remark-
able success, there are some deficiencies. Matrix factorization
methods focus on users and items in feature space and get the
latent feature vectors of users and items by decomposing the rating
matrix. But almost all of these algorithms are designed to fit the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.elerap.2017.10.007&domain=pdf
https://doi.org/10.1016/j.elerap.2017.10.007
mailto:zhaozhl7@mail2.sysu.edu.cn
mailto:changdongwang@hotmail.com
mailto:changdongwang@hotmail.com
mailto:wanyy@smail.nju.edu.cn
mailto:stsljh@mail.sysu.edu.cn
mailto:stsljh@mail.sysu.edu.cn
https://doi.org/10.1016/j.elerap.2017.10.007
http://www.sciencedirect.com/science/journal/15674223
http://www.elsevier.com/locate/ecra


110 Z.-L. Zhao et al. / Electronic Commerce Research and Applications 26 (2017) 109–118
matrix directly to extract latent features and have not considered
the user-item relationship in feature space. However, this relation-
ship is useful in recommendation. This is because, different users
will give different ratings to the same item and we can infer
whether the user likes the item according to the rating. If a user
gives a high rating to an item since the user likes the item, the user
should be close to the item in feature space and vice versa. Another
deficiency is that, although most of existing recommendation algo-
rithms use inner product to fit real rating, this method lacks inter-
pretation about why inner product can be used to predict rating.
So, we develop a new prediction method based on similarity,
which can explain that the predicted rating is associated with
the relationship between user and item in feature space.

To address the above issues, we present a recommendation in
feature space sphere (RFSS). This algorithm considers the relation-
ship between users and items in feature space which is measured
by Euclidean distance with rating as weight. If a user likes an item,
the weight will be large and the user will be close to the item in
feature space. And if a user is close to an item in feature space,
the predicted rating will be high. Additionally, a user-dependent
coefficient which is self-adaptive is used to map the relationship
between user and item in feature space.

The contributions are summarized as follows:

1. A regularization term that measures the user-item relationship
in feature space by Euclidean distance will be considered in the
objective function.

2. An adaptive user-dependent coefficient is introduced to map
the cosine-based similarities between users and items to the
predicted ratings.

3. Complexity and convergence analysis is conducted to show the
convergence property of the proposed method.

4. We conduct experiments on four real world datasets and the
results show that the proposed RFSS algorithm outperforms
the state-of-the-art recommendation algorithms.

2. Related work

Many efforts have been made in matrix factorization algorithms
to improve the performance. Bayesian probabilistic matrix factor-
ization (BPMF) (Ruslan and Andriy, 2008) uses bayesian treatment
on the probabilistic matrix factorization to introduce Gaussian-
Wishart priors on the hyperparameters of the user and item fea-
ture vectors. For improving singular value decomposition (SVD),
the biases of users and items are integrated into SVD so as to better
fit ratings (Paterek, 2007). In Wen et al. (2014), Cosine Matrix Fac-
torization (CosMF) utilizes cosine similarity to replace inner pro-
duct for sparse users and items to address the sparsity problem
without auxiliary data. But it just considers the angle between
two latent feature vectors and ignores their lengths. As an
improved version, the expected risk minimized matrix approxima-
tion method (ERBMMA) (Li et al., 2017) uses expected risk to
achieve better tradeoff between optimization error and generaliza-
tion error. Chen et al. proposed a cross-domain recommendation
algorithm (Chen et al., 2013) which uses PARAFAC tensor decom-
position to extract the knowledge from the auxiliary domain and
makes use of the knowledge in the target domain to increase user
acceptance rate in recommendation lists. Kang et al. proposed a
matrix factorization algorithm (Kang et al., 2016) that fills user-
item matrix based on the low-rank assumption and keeps the orig-
inal information at the same time for Top-N recommendation. But
the above algorithms do not take the relationships between latent
feature vectors into consideration.

Recently, the relationship about users and items in feature
space has been considered to improve the performance of matrix
factorization recommendation algorithm. Matrix factorization to
asymmetric user similarities (MF-AMSD) (Pirasteh et al., 2015) gets
the user features by decomposing the asymmetric user similarity
matrix, so the similar users are also similar in feature space.
Although these user features are used to predict ratings, the pro-
cesses of feature extraction and rating prediction are independent
which will cause error propagation. Recommender Systems with
Social Regularization (SR) (Ma et al., 2011) supposes that a user
should be close to his trusted users in feature space while the algo-
rithm needs the data in trust network which may not be suitable
for universal cases. On the contrary, the algorithm proposed by
Paterek (2007), considering the item relationship in feature space,
uses the item-item similarity learned as a product of two low-rank
vectors to make a rating prediction. But the algorithm only consid-
ers item relationship and ignores user relationship in feature space.
Following Paterek, Koren proposed a method (Koren, 2008) which
combines matrix factorization and the traditional neighborhood
based model to learn the latent features of users and items simul-
taneously, but the drawback is that the relationship between users
and items in feature space has not yet been considered. Sparse
covariance matrix factorization (SCMF) (Shi et al., 2013) uses
sparse covariance prior to find the correlation between latent fea-
tures. The algorithm connects users and items by placing the same
prior to latent feature vectors which however cannot ensure a user
will be close to the item he prefers in feature space.

To address the above issues, we propose a recommendation in
feature space sphere (RFSS) which can improve the quality of rec-
ommendation by considering the user-item relationship in feature
space.
3. The proposed algorithm

In recommendation algorithms, a user-item rating matrix
R ¼ ½rij�m�n is used to represent the rating relation betweenm users
and n items. Each entry rij denotes the rating of user i to item j
within a certain numerical interval ½Rmin;Rmax� which will vary in
different datasets and if user i does not rate item j; rij ¼ 0. Iij is
the indicator function that is equal to 1 if user i has rated item j
or 0 otherwise. In the matrix factorization recommendation algo-
rithms, ai and bj are d-dimensional vectors representing the latent
features of user i and item j respectively.
3.1. Objective function

Different from the conventional latent factor based recommen-
dation algorithms (Gao et al., 2013), in our proposed algorithm, we
suppose that all the latent feature vectors are laying on the unit
sphere surface in the feature space, so aiaT

i ¼ 1 for i ¼ 1; . . . ;m

and bjb
T
j ¼ 1 for j ¼ 1; . . . ;n. As we will see below, the advantage

of unit constraint is that the similarity between user and item in
feature space can be calculated easily. Besides, the Euclidean dis-
tance can be confined to a certain range which can avoid some
extreme conditions.

Therefore, the user latent feature vectors and item latent fea-
ture vectors are in the same feature space. All the items have their
own features and the features of users can been represented by the
features of items they have rated. In the feature space, if user i likes
item j, the user is close to the item, i.e. their latent feature vectors
are similar. So, Euclidean distance is suitable to measure user-item
relationship. The kind of user-item relationship can be recon-

structed by minimizing the term
Pm

i¼1

Pn
j¼1rijkai � bjk22Iij under

the constraint of unit sphere surface representation, in which the
rating rij can be viewed as a weight and the higher the rating is,
the closer user i and item j will be enforced to be. Besides, this term
can be viewed as a regularization term when learning the latent
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feature vectors ai and bj. The value of kai � bjk22 is bounded, accord-
ing to Cauchy-Schwartz and Minkowski inequality:

0 6 rijkai � bjk22 ¼ rij j ðai � bjÞðai � bjÞT j6 rijkai � bjk2kai � bjk2
6 rijðkaik2 þ kbjk2Þðkaik2 þ kbjk2Þ ¼ 4Rmax ð1Þ

But our goal is to predict ratings to non-purchased items, we
suppose the closer the latent feature vectors of user i and item j are,
the higher the predicted rating will be. Although inner product is
commonly used by matrix factorization algorithms to predict rat-
ings, it lacks interpretation. So, we propose a cosine-based similar-
ity method, and the similar between user i and item j is:

sij ¼
aib

T
j

kaik22kbjk22
¼ aib

T
j : ð2Þ

There are two L2-norm terms in the denominator of the cosine
function, which makes the problem difficult to solve. That is the
reason why we suppose features lie on the surface of unit sphere.
Because the situation user i is close to item j in the unit sphere of
the feature space means the user likes the item, the value of the
predicted rating of the user to the item tends to be larger as they
get closer. Another advantage of cosine-based similarity is that
upper bound and lower bound are certain and would not cause
infinitely large or infinitely small predicted ratings.

So, the Euclidean distance is used to model the relationship
between users and items in feature space while the cosine opera-
tion is used to infer ratings according to latent features. Traditional
matrix factorization methods such as PMF (Salakhutdinov and
Mnih, 2007) use inner product to predict ratings but they lack
the explanation why it can be used and what it represents. And
the proposed algorithm predicts the ratings according to the cosine
distances between users and items in feature space.

However, the value of rating rij can not be determined by only
the similarity sij, since the range of similarity is ½0;1� which might
be different from that of rating (e.g. in case of rating range of ½1;5�).
Moreover, for different users, even the same values of similarity to
the same item may reflect various levels of affection these users to
the item which will be discussed later. To this end, we get the pre-
dicted rating pij of user i to item j by the linear function:

pij ¼ lisij ¼ liaib
T
j ; ð3Þ

where the adaptive user-dependent coefficient li varies from one
user to another. We just consider user-dependent coefficient
because users have their own idea and items are objective, so
item-dependent coefficient is unnecessary. The views from users
to the same item will vary but the properties of items will not
Fig. 1. Illustration of the RFSS mode
change. So, we map similarity to rating according to humanity
rather than using item scaling term. If a user only likes and has pur-
chased one kind of items (i.e. the items are similar), the user is close
to all the items he has rated in the unit sphere surface of the feature
space and all the similarities will be large. So the coefficient li will
be small for the user. On the contrary, if the interest of a user is wide
(i.e. these purchased items distribute widely in different categories),
he is relatively far from all the rated items in the unit sphere surface
of the feature space because all the purchased items are far from
each other and the user will lie in the center of these items approx-
imately by definition. So, the coefficient li will be large for the user.
From another point of view, some users would like to give high rat-
ings to items while other users low, so the values of li will be large
for the former and small for the latter. The more complicated and
common scenario is that some users give high rating to some items
and give low rating to the other items, and in this case the magni-
tude of the coefficient li is difficult to be determined by intuition. In
general, the values of the coefficient li should be diverse for differ-
ent users and should be learned from data automatically. In order to
get a good prediction, the prediction error of the termPm

i¼1

Pn
j¼1krij � liaib

T
j k22Iij should be reduced. The user and item

latent feature vectors in the term of prediction error are impacted
by the user-item relationship.

We should notice that the proposed RFSS algorithm aims to find
suitable positions for all users and items in the unit sphere feature
space according to the rating records, and predict ratings according
to the relationships in the feature space. So the meanings of the
two latent feature vectors ai and bj are the same in our algorithm.
The value of a feature in the d-dimensional space represents the
preference of a user or an item. As mentioned before, the drawback
of PMF (Salakhutdinov and Mnih, 2007) is that there is no explana-
tion why inner product can be used to predict ratings. So we pro-
pose a novel algorithm from a different perspective, which can
explain the meaning of measuring distances and predicting ratings
in the feature space. Although Eq. (3) is similar to the method used
in PMF, the meaning is quite different. The proposed method
deduces Eq. (3) from the spatial relationship and cosine-based sim-
ilarity method. Besides, there are a user-dependent coefficient and
a spatial constraint.

Because aiaT
i ¼ 1 and bjb

T
j ¼ 1 are not convex set, by relaxing

these constraints into convex set aiaT
i 6 1 and bjb

T
j 6 1, Eq. (3)

can be taken as an approximate cosine-based similarity.To better
understand the constraint and the whole algorithm, an example
is shown in Fig. 1 which describes the spatial relationship of ai

and bj. In order to visualize the data element, the dimensionality
d is set to be 2 in this example. If we strictly restrict the vectors
l in the two-dimensional case.
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have to reach the surface of the unit sphere feature space as shown
in Fig. 1(a), the expression abilities of vectors will be very limited.
If we relax the constraint to the inside as well as the surface of the
sphere as shown in Fig. 1(b), the domain of vectors will be convex
which ensures the convergence of the function (Boyd and
Vandenberghe, 2004). If we remove the constraint, some poor pre-
dictions will occur as shown in Fig. 1(c). Without this restricted
condition, the predicted rating will be high even the user and the
item are far from each other because the predicting method is
based on the approximate cosine-based similarity which does
not consider the length of vectors.

As the assumption of the proposed algorithm, if a user likes an
item, the user should be close to the item in feature space, and the
predicted value should be high. That is also why cosine similarity is
used to predict ratings. So the relaxed constraint can make sure
that the approximate cosine-based similarity can provide rational
predictions because the length of vectors is in the range of ½0;1�.
The term

Pm
i¼1

Pn
j¼1rijkai � bjk22Iij may also mitigate those poor pre-

dictions to some extent but it focuses more on measuring the rela-
tionships of users and items in the feature space instead of
generating the sound rating predictions of the approximate
cosine-based similarity.

Considering the user-item relationship, we can get the objective
function:

min L ¼ 1
2

Xm
i¼1

Xn
j¼1

krij � liaib
T
j k2Iij þ k

2

Xm
i¼1

Xn
j¼1

rijkai � bjk22Iij;

s:t: aiaT
i 6 1; i ¼ 1 . . .m;

bjb
T
j 6 1; j ¼ 1 . . .n;

ð4Þ

where k is a regularization coefficient which is used to adjust the
influence of the second term.

3.2. Optimization

The constraint terms can be moved into the objective function
and the problem becomes:

min Lc ¼ Lþ
Xm
i¼1

GðaiÞ þ
Xn
j¼1

GðbjÞ; ð5Þ

where G is an indicator function:

GðhÞ ¼ 0; if hhT 6 1
1; otherwise

(
: ð6Þ

Because when we get the optimal solution of Lc , all the indica-
tor functions GðaiÞand GðbjÞ are equal to 0 and all the constraints of
variables ai and bj will be satisfied. But the optimization problem is
still complicated. In order to split the problem Lc into some sub-
problems which can be easily resolved (optimized) in an alternate
way, some new variables xi and yj will be introduced and this prob-
lem can be rewritten in ADMM (Alternating Direction Method of
Multipliers) (Boyd et al., 2011) form as follows:

minLg ¼ Lþ
Xm
i¼1

GðxiÞ þ
Xn
j¼1

GðyjÞ;

s:t:ai � xi ¼ 0; i ¼ 1 . . .m;

bj � yj ¼ 0; j ¼ 1 . . .n: ð7Þ
As in the method of multipliers, we form the augmented

Lagrangian (using the scaled dual variable) (Hestenes, 1969;
Powell, 1969):
Lq ¼ 1
2um

m
i¼1

Xn
j¼1

krij � liaib
T
j k22Iij þ k

2

Xm
i¼1

Xn
j¼1

rijkai � bjk22Iij

þ
Xm
i¼1

GðxiÞ þ
Xm
i¼1

ðqai ;xi
=2Þkai � xi þ uik22

þ
Xn
j¼1

GðyjÞ þ
Xn
j¼1

ðqbj ;yj
=2Þkbj � yj þ v jk22;

ð8Þ

where ui and v j are scaled dual variable, qai ;xi
> 0 and qbj ;yj

> 0 are

penalty parameters. In order to update all the parameters in the
ðkþ 1Þth iteration, we can express ADMM as

akþ1
i ¼ argmin

ai
ðLðak

:i;ai;b
k; lkÞ þ ðqai ;xi

=2Þkai � xki þ uk
i k22Þ;

bkþ1
j ¼ argmin

bj
ðLðakþ1;bk

:j;bj; l
kÞ þ ðqbj ;yj

=2Þkbj � ykj þ vk
j k22Þ;

lkþ1
i ¼ argmin

li
Lðakþ1;bkþ1; lk:i; liÞ;

xkþ1
i ¼ argmin

xi
GðxiÞ þ ðqai ;xi

=2Þkakþ1
i � xi þ uk

i k22
� �

¼ PGðakþ1
i þ uk

i Þ;

ykþ1
j ¼ argmin

yj
GðyjÞ þ ðqbj ;yj

=2Þkbkþ1
j � yj þ vk

j k22
� �

¼ PGðbkþ1
j þ vk

j Þ;

ukþ1
i ¼ uk

i þ akþ1
i � xkþ1

i ;

vkþ1
j ¼ vk

j þ bkþ1
j � ykþ1

j ; ð9Þ
where PGdenotes the projection onto xixTi 6 1 (or yjyTj 6 1).

We can update the parameters ai and bj by Gradient Descent
method and the gradients have the following forms:

rak
i ¼ �

Xn
j¼1

ðrij � liak
i ðbk

j Þ
TÞlibk

j Iij þ k
Xn
j¼1

rijðak
i � bk

j ÞIij

þ ðqai ;xi
=2Þðak

i � xki þ uk
i Þ ¼

Xn
j¼1

ððl2i ak
i ðbk

j Þ
T � ðli þ kÞrijÞbk

j

þ krijak
i ÞIij þ ðqai ;xi

=2Þðak
i � xki þ uk

i Þ;

rbk
j ¼ �

Xm
i¼1

ðrij � liakþ1
i ðbk

j Þ
TÞliak

i Iij � k
Xm
i¼1

rijðakþ1
i � bk

j ÞIij

þ ðqbj ;yj
=2Þðbk

j � ykj þ vk
j Þ ¼

Xm
i¼1

ððl2i akþ1
i ðbk

j Þ
T � ðli þ kÞrijÞakþ1

i

þ krijb
k
j ÞIij þ ðqbj ;yj

=2Þðbk
j � ykj þ vk

j Þ:
ð10Þ

As pointed out in Eckstein and Bertsekas (1992), ADMM allows
us to solve the minimizations only approximately at first, and then
more accurately as the iterations progress. So, the parameters ai

and bj are not necessary to reach the best when the other param-
eters are fixed in each iteration and Gradient Descent method will
be used to get new ai and bj which are better than those of the last
iteration:

akþ1
i ¼ ak

i � lrak
i ;

bkþ1
i ¼ bk

i � lrbk
j ;

ð11Þ

where l is the learning rate.

Since lkþ1
i minimizes Lðakþ1; bkþ1; lk:i; liÞ, the gradient of li is:

rlki ¼ �
Xn
j¼1

rij � liakþ1
i ðbkþ1

j ÞT
� �

akþ1
i ðbkþ1

j ÞT Iij: ð12Þ

The formula of lkþ1
i can be obtained by setting rlki ¼ 0:
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lkþ1
i ¼

Xn
j¼1

rijakþ1
i ðbkþ1

j ÞT Iij
Xn
j¼1

ðakþ1
i ðbkþ1

j ÞTÞ
2
Iij

: ð13Þ

In order to get the update method of xi, we should get the pro-
jection of # ¼ akþ1

i þ uk
i within the unit sphere space xixTi 6 1. The

projection problem can be transformed into an equivalent con-
strained minimization problems when akþ1

i þ uk
i > 1:

min kxi � #k22;
s:t: xixTi 6 1:

ð14Þ

The Lagrangian function of the above objective is:

Lðxi; mÞ ¼ kxi � #k22 þ mðxixTi � 1Þ; ð15Þ
where m is a Lagrange multiplier. When

xi ¼ #

1þ m
; ð16Þ

the Lagrangian function Lðxi; mÞ gets the minimal value. So the
Lagrange dual function is:

gðmÞ ¼ min
xi

Lðxi; mÞ ¼ kð 1
1þm � 1Þ#k22 þ m 1

ð1þmÞ2 ##
T � 1

� �
¼ m

1þm##
T � m;

ð17Þ

where the Lagrange multiplier m can be obtained by:

m ¼ argmax
m

gðmÞ ¼
ffiffiffiffiffiffiffiffi
##T

p
� 1: ð18Þ

So the formula of xi in the ðkþ 1Þth iteration is:

xkþ1
i ¼ PGð#Þ ¼

#; if ##T 6 1
#ffiffiffiffiffiffi
##T

p ; otherwise

8<
: ; ð19Þ

and the update method of yj can be derived in the same way.
The primal and dual residuals of ai and xi in the kth iteration are

wk
ai ;xi

¼ ai � xi and skxi ¼ qk
ai ;xi

ðxk�1
i � xki Þ respectively. And the two

terms of bj and yj are wk
bj ;yj

¼ bj � yj and skyj ¼ qk
ai ;xi

ðyk�1
j � ykj Þ. The

penalty parameters qk
ai ;xi

can be updated in each iteration by He
et al. (2000); Wang and Liao, 2001:

qkþ1
ai ;xi

¼
sincrqk

ai ;xi
; if kwk

ai ;xi
k2 > /kskxik2

qk
ai ;xi

=sdecr; if kskxik2 > /kwk
ai ;xi

k2
qk
ai ;xi

; otherwise:

8>><
>>: ; ð20Þ

where the typical choices of the parameters are sincr ¼ sdecr ¼ 2 and
/ ¼ 10. The update of qbj ;yj

can be derived similarly.

3.3. Rating adjustment

A local minimum of the objective function will be found when
the iteration converges and the predicted rating pij of user i to a
non-purchased item j can be predicted by Eq. (3). And we must
ensure that all predicted ratings pij are in an interval ½Rmin;Rmax�.
When the predicted rating goes beyond the range, some adjust-
ments must be applied:

pij ¼
Rmax; if pij > Rmax

Rmin; if pij < Rmin

pij; otherwise

8><
>: : ð21Þ
3.4. Overview

For clarity, the proposed algorithm is summarized in Algorithm
1. Since it is difficult to directly optimize ai and bj from the com-
plex objective function Eq. (4), we divide ai into ai and xi, and bj

into bj and yj based on the divide and conquer idea of ADMM. In
the proposed algorithm, ai and bj should satisfy the unit sphere
constraint. Due to ADMM, it is unnecessary for us to restrict ai

and bj directly. As shown in Algorithm 1, xi and yj will be projected
to the unit sphere feature space in each iteration, the theoretical
guarantee of which has been proved in the project algorithm
(Parikh and Boyd, 2014). And the theory of ADMM (Boyd et al.,
2011) can make sure that ai ¼ xi and bj ¼ yj when the objective
function converges, so ai and bj will satisfy the spatial constraint
in the end.

Algorithm 1 RFSS

1: Input: rating matrix R, regularization coefficient k, learning
rate l

2: Initialize: randomly initialize ai; bj; li; xi; yj;ui;v j;qai ;xi ;qbj;yj

3: while not converge do
4: Compute gradients rai and rbj according to Eq. 10.
5: ai ¼ ai � lrai.
6: bj ¼ bj � lrbj.

7: li ¼
Pn

j¼1
rijaiðbjÞT IijPn

j¼1
ðaiðbjÞT Þ

2
Iij
.

8: xi ¼ PGðai þ uiÞ.
9: yj ¼ PGðbj þ v jÞ.
10: ui ¼ ui þ ai � xi.
11: v j ¼ v j þ bj � yj.
12: Update qai ;xi and qbj;yj

according to Eq. (20).

13: end while
14: Predict pij according to Eq. (3) and adjust it by Eq. (21).
15: Output: pij
4. Complexity and convergence analysis

Similar to PMF (Salakhutdinov and Mnih, 2007), the most time-
consuming part is the derivation of user and item latent feature
vectors. So, the time complexity is also OðtmndÞ where t is the
number of iterations.

Lemma 1. If x ¼ PGð#Þ; kxk22 6 k#k22
proof 1. According to Eq. (22), we can get that:

kxk22 ¼ k#k22; if ##T 6 1
1; otherwise

(
6 minf1; k#k22g 6 k#k22: ð22Þ
Lemma 2. If kxik22 6 k#ik22 for i ¼ 1; . . . ;m, there is a variable dmak-
ing the following equation true,

dE½kxik22� ¼ E½k#ik22� ð23Þ
where d P 1.
Theorem 1. According to the proposed optimization method,

ðak�; xk�; bk�; yk�Þ is an optimal solution of the kth iteration to the
RFSS algorithm and the convergence rate is,
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j f k � f � j¼ max O
1
2

� �
;Oðqk�1

ffiffiffiffiffiffiffiffiffi
dk�1

p
Þ

� �
; ð24Þ

where f k ¼ Lgðak�; xk�;bk�; yk�Þis the value of the kth iteration and f �

is the optimal value of the RFSS algorithm.

proof 2.
For convenience, we suppose qk

ai ;xi ¼ qk
bj ;yj

¼ qk. Because the

parameter l will get the optimal value in each iteration, so we just
discuss the parameters a; x and the analyses on b; y are similar.

Lqðaðkþ1Þ�; xðkþ1Þ�;uk�Þ ¼ minLqða; x;uk�Þ 6 min
a¼x

Lqða; x;uk�Þ
¼ min

a¼x
Lgða; x;uk�Þ ¼ f �;

ð25Þ
we can get,

Lgðaðkþ1Þ�; xðkþ1Þ�Þ ¼ Lqðaðkþ1Þ�; xðkþ1Þ�;uk�Þ � q
2 ð
Xm
i¼1

kuk�
i þ aðkþ1Þ�

i

�xðkþ1Þ�
i k22Þ

6 f � � q
2 ð
Xm
i¼1

kuk�
i þ aðkþ1Þ�

i � xðkþ1Þ�
i k22Þ

6 f � þ 2qk

Xm
i¼1

ðuk�
i þ aðkþ1Þ�

i Þxðkþ1Þ�
i

 !

6 f � þ 2qk

Xm
i¼1

kuk�
i þ aðkþ1Þ�

i k2kxðkþ1Þ�
i k2

 !

¼ f � þ 2qk

ffiffiffiffiffi
dk

p Xm
i¼1

kxðkþ1Þ�
i k2

6 f � þ 2qk

ffiffiffiffiffi
dk

p
m:

ð26Þ
The second inequality uses Lemma 1 and Average Value

inequality. The third inequality uses Cauchy-Schwartz inequality.
The second equality uses Lemma 2. On the other hand, we can get,

Lg ðaðkþ1Þ�; xðkþ1Þ�Þ P Lgðaðkþ1Þ�; xkþ1Þ �
Xm
i¼1

Gðxkþ1
i Þ

P f � �
Xm
i¼1

Gðxkþ1
i Þ ¼ f � �m � E½Gðxkþ1

i Þ� ¼ f � � m
2

ð27Þ

We complete the proof by considering the other parameters,

f � � mþn
2 6 Lgðaðkþ1Þ�; xðkþ1Þ�;bðkþ1Þ�; yðkþ1Þ�Þ

6 f � þ 2qk

ffiffiffiffiffi
dk

p ðmþ nÞ: ð28Þ
5. Experiments

In this section, extensive experiments have been conducted on
four datasets to evaluate the effectiveness of our RFSS algorithm.
The values of the parameters d and k will be adjusted to analyse
their effects on our algorithm and performance comparison with
ten state-of-the-art recommendation algorithms will be reported.
Source code is available athttps://github.com/sysulawliet/RFSS.

5.1. Dataset description

The four datasets used in our experiments are Jester1,
MovieLens2, FindFoods3 and BaiduMovie4.
1 http://eigentaste.berkeley.edu/dataset.
2 http://grouplens.org/datasets/movielens.
3 http://snap.stanford.edu/data/web-FineFoods.html.
4 http://openresearch.baidu.com.
1. The Jester dataset collects continuous ratings of joke from April
1999 to May 2003 provided by University of California. The
dataset is relatively dense because each user has rated many
items and there are some jokes almost all users have rated.
There are negative ratings on the datasets, so we map the range
of the rating from the interval [�10, 10] to [0, 20].

2. The MovieLens dataset contains ratings of the online movie rec-
ommender service MovieLens. All the users have rated at least
20 movies but the user-item rating matrix is still quite sparse
since the number of movies is far larger than 20.

3. The BaiduMovie dataset comes from the Movie Recommenda-
tion Algorithm Contest of Baidu. The data only stands for the
active users and each user has made enough records.

4. The FindFoods dataset, which is collected by Stanford Univer-
sity, consists of reviews of find foods from Amazon up to Octo-
ber 2012.

The properties of the four datasets are summarized in Table 1.
The four datasets split randomly with 80% as training set and
20% as testing set.

5.2. Evaluation methodology

In order to evaluate the quality of the recommendation algo-
rithms, two widely used evaluation metrics, namely Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE), will be
used to measure the accuracy of the predicted ratings, which are
defined as follows:

MAE ¼ 1
T

X
i;j

j rij � pij j; RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

X
i;j

ðrij � pijÞ2
s

; ð29Þ

where T denotes the number of tested ratings. By definition, a smal-
ler MAE and RMSE value means better prediction quality of an algo-
rithm. RMSE is sensitive to large errors while MAE is sensitive to the
accumulation of small errors.

5.3. Parameter analysis

We analyse the effect of the dimensionality d of latent feature
vector and the regularization coefficient k on the performance of
the RFSS algorithm. We vary the value of k from 0 to 1 with
d ¼ 2;5 and 10 and set the step size to 0.1. The results are shown
in Fig. 2 and Fig. 3. In general, the performance of the algorithm
will become better as the increase of the dimensionality d because
using more latent features to describe users and items leads to
more accurate characterizations. In other words, the ratings can
be fitted better by high dimensional vectors. On the MovieLens
and BaiduMovie datasets, the algorithm has similar effects when
d is equal to 5 and 10 since it is enough to construct the latent fea-
tures of users and items with 5 dimensions when the other param-
eters are fixed. However, the performance will be worse when d
increases from 5 to 10 on the FindFoods dataset and the reason
might be due to the overfitting when d ¼ 10. We observe that
the algorithm on each dataset has different sensitivities to k due
to the inherent differences of data properties. Generally speaking,
the performance first increases and then decreases as the increas-
ing of parameter k and the algorithm can achieve the best results
when k is around 0.5. When k ¼ 0, our algorithm degenerates into
the traditional matrix factorization methods which do not consider
the user-item relationship in feature space and has a poor effect.
On the other hand, the performance is not good as well when
k ¼ 1 since over-emphasizing the user-item relationship in feature
space leads to the under-fitting of ratings. So, the RFSS algorithm
can get a good performance with suitable influence of the user-
item relationship in feature space.

https://github.com/sysulawliet/RFSS
http://eigentaste.berkeley.edu/dataset
http://grouplens.org/datasets/movielens
http://snap.stanford.edu/data/web-FineFoods.html
http://openresearch.baidu.com


Table 1
The details of the four datasets.

Datasets Jester MovieLens BaiduMovie FindFoods

#users 59,132 6040 9722 256,059
#items 140 3952 7889 74,258
#ratings 1,761,439 1,000,209 1,262,741 568,454
density 0.2127 0.0419 0.0164 0.0002

Fig. 2. The values of MAE with different d and k values on the four datasets.
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5.4. Comparison experiments

We present the comparison results on the predicted ratings in
terms of accuracy between the proposed RFSS algorithm and ten
state-of-the-art recommendation algorithms, namely UBCF (User-
Based Collaborative Filtering) (Wang et al., 2006), IBCF (Item-
Based Collaborative Filtering) (Sarwar et al., 2001), SO (Slope One)
(Lemire and Maclachlan, 2005), BS (Bayesian Similarity) (Guo
et al., 2013), IRSVD (Improving Regularized Singular Value Decom-
position) (Paterek, 2007), SVD++ (Singular Value Decomposition
Plus Plus) (Koren, 2008), CosMF (Cosine Matrix Factorization)
(Wen et al., 2014), SCMF (Sparse Covariance Matrix Factorization)
(Shi et al., 2013), MF-AMSD (Matrix factorization to asymmetric
user similarities) (Pirasteh et al., 2015), ERBMMA (expected risk
minimized matrix approximation method) (Li et al., 2017). UBCF
and BS consider the distances between userswhile IBCF and SO con-
sider the distances between items, and the four recommendation
algorithms use the distances and rating records to predict ratings
to non-purchased items. IRSVD, SVD++, CosMF, SCMF, MF-AMSD
and ERBMMA are matrix factorization methods which find latent
features of users and items and then make predictions based on
these features. Except CosMF, the other five algorithms use inner
product to predict ratings and all of them do not consider the rela-
tionship between users and items in feature space.We set k ¼ 0:5 in
our algorithm for all datasets. Without loss of generality, we set
dimensionality d ¼ 5 for all matrix factorization methods.
The comparison results in terms of MAE and RMSE are reported
in Fig. 4 and Fig. 5 respectively. The values of percentage gain
obtained by the proposed RFSS algorithm over the existing meth-
ods are shown in Table 2. The accuracies generated by SO are quite
poor on the four datasets, i.e., its MAE or RMSE is quite large and
RFSS can achieve the improvement from 15% to 40%. The perfor-
mances of UBCF, IBCF, SCMF and MF-AMSD are similar on the Jester
and MovieLens datasets and RFSS can make about 5% improve-
ment. Each item on FindFoods has many ratings so the item simi-
larities can be calculated accurately which makes IBCF works well.
RMSE is sensitive to large errors while MAE is sensitive to the accu-
mulation of small errors. Because there are some cold users and
items in the dataset leading to some large prediction errors, IBCF
outperforms RFSS in terms of RMSE on FindFoods. Besides, SCMF
is significantly better than MF-AMSD on the two datasets. The per-
formance of the BS algorithm is pretty good on the Jester and Find-
Foods datasets. Compared with BS, RFSS can make about 3%
improvement on the MovieLens and BaiduMovie datasets but more
than 12% on the other two. The IRSVD algorithm does not work as
well as our method but is still impressive on all datasets and RFSS
can achieve 1% to 14% improvement, and the performance of
ERBMMA is at least 1% better than IRSVD on the four datasets
except BaiduMovie. RFSS can achieve 2% to 8% improvement over
SVD++, which just considers the relationships within users and
within items. Although CosMF uses cosine to predict ratings, the
unrestricted vectors make it predict ratings for some pairs of user



Fig. 3. The values of RMSE with different d and k values on the four datasets.

Fig. 4. The values of MAE on the four datasets of the eleven recommendation algorithms.
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Fig. 5. The values of RMSE on the four datasets of the eleven recommendation algorithms.

Table 2
The values of percentage gain obtained by the RFSS algorithm over the ten compared algorithms.

Dataset Jester MovieLens FindFoods BaiduMovie

Algorithm MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UBCF 13.05% 10.94% 9.26% 7.77% 28.48% 15.32% 7.84% 4.88%
IBCF 12.57% 10.35% 10.31% 8.78% 4.78% �4.61% 14.74% 11.89%
SO 18.56% 16.91% 20.57% 15.53% 40.35% 17.06% 22.71% 16.21%
BS 13.74% 12.14% 2.83% 3.19% 34.39% 15.38% 4.45% 1.93%
IRSVD 9.42% 7.98% 2.71% 1.97% 14.24% 9.33% 0.71% 0.88%
SVD++ 8.32% 7.52% 5.08% 3.89% 6.79% 2.51% 5.69% 3.16%
CosMF 11.07% 10.80% 3.15% 1.63% 9.32% 3.14% 6.33% 4.78%
SCMF 13.23% 10.90% 7.26% 8.54% 11.76% 9.97% 19.78% 15.19%
MF-AMSD 13.46% 11.37% 10.26% 13.66% 44.23% 38.63% 7.58% 4.13%
ERMMA 7.57% 6.58% 0.73% 1.18% 10.67% 8.6% 1.98% 1.86%
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and item improperly. So RFSS can make 1% to 11% improvement
over CosMF. In general, the proposed RFSS algorithm can make a
more accurate rating prediction than the existing state-of-the-art
recommendation algorithms on the four datasets.
6. Conclusion

In this paper, we have proposed a recommendation in feature
space sphere (RFSS). Different from the traditional matrix factor-
ization methods, the proposed algorithm considers the relation-
ship between users and items when finding suitable positions for
all users and items in the unit sphere feature space according to
ratings. Besides, the predicted ratings are concerned with the dis-
tances between users and items in the feature space and the adap-
tive user-dependent coefficients. We optimize our objective
function with constraints by the ADMM algorithm. Extensive
experiments have been conducted on four real-world datasets.
The results have confirmed that the relationship in feature space
has an impact on the quality of recommendation and the proposed
method significantly outperforms the existing recommendation
algorithms.
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