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Abstract
We investigate decentralized online convex optimization (D-OCO) in changing environments, and
choose adaptive regret and dynamic regret as the performance metric. Specifically, these two met-
rics compare each local learner against the optimal comparator over every interval, and any se-
quence of comparators over all rounds, respectively. It is well-known that in the centralized setting,
plenty of algorithms with (nearly) optimal bounds on these two metrics have been proposed. How-
ever, none of them has been extended into D-OCO, possibly due to the difficulty in handling their
commonly used two-level structure. To fill the gap, in this paper, we propose black-box reductions
from minimizing these two metrics of D-OCO to minimizing them in the centralized setting. Let n,
ρ, and T denote the number of local learners, the spectral gap of the communication matrix, and the
time horizon, respectively. For adaptive regret, our reduction can achieve an Õ(nρ−1/4

√
τ log T )

bound over any interval of length τ in general, and an improved one of Õ(nρ−1/2(log T )3) when
facing strongly convex functions. These two bounds match existing lower bounds up to polylog-
arithmic factors. For dynamic regret, our reduction can achieve an Õ(nρ−1/4

√
T (1 + PT ) log T )

bound in general, where PT is the path-length of comparators. We also provide the first lower bound
for dynamic regret of D-OCO to demonstrate that our dynamic regret is nearly optimal.
Keywords: Online Convex Optimization, Decentralized Optimization, Adaptive Regret, Dynamic
Regret, Black-Box Reductions

1. Introduction

Decentralized online convex optimization (D-OCO) has become a popular learning framework for
modeling various real-time distributed applications (Li et al., 2023). Specifically, it can be formu-
lated as a repeated game between an adversary and n local learners in a network defined by an
undirected graph G = ([n], E) with the edge set E ⊆ [n] × [n]. In each round t ∈ [T ], each local
learner i ∈ [n] must first select a decision xi(t) from a convex set K ⊆ Rd, and then receives a
convex loss function ft,i(x) : K → R selected by the adversary. Let ft(x) =

∑n
j=1 ft,j(x) denote

the global function in each round t. To minimize the global loss, in each round, these local learners
are allowed to communicate with their immediate neighbors once via a single gossip step (Xiao and
Boyd, 2004; Boyd et al., 2006), i.e., computing a weighted average of some local variables based
on a weight matrix P ∈ Rn×n given beforehand. The standard performance measure of D-OCO is
regret of each local learner i:

R(T, i) =
T∑
t=1

ft(xi(t))−min
x∈K

T∑
t=1

ft(x) (1)

which is the cumulative global loss of the learner minus that of a fixed optimal decision.
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Over the past decade, the regret of D-OCO has been extensively studied, yielding various algo-
rithms and theories (Yan et al., 2013; Hosseini et al., 2013; Zhang et al., 2017b; Wan et al., 2020,
2022c; Wang et al., 2023; Wan et al., 2024a,b). Most notably, Wan et al. (2024a,b) establish nearly
optimal regret bounds of Õ(nρ−1/4

√
T ) and Õ(nρ−1/2 log T ) for convex and strongly convex func-

tions respectively,1 where ρ < 1 is the spectral gap of P . However, since only a fixed comparator
is introduced in (1), the traditional regret actually cannot reflect the hardness of problems with
changing environments, where the best decision could drift over time. To address this limitation, we
investigate D-OCO with two more suitable metrics including adaptive regret (Hazan and Seshadhri,
2007, 2009; Daniely et al., 2015) and dynamic regret (Zinkevich, 2003). Specifically, the adaptive
regret evaluates the performance of local learners on every interval of length τ , and is defined as

SAR(T, τ, i) = max
[s,s+τ−1]⊆[T ]

(
s+τ−1∑
t=s

ft(xi(t))−min
x∈K

s+τ−1∑
t=s

ft(x)

)
(2)

where comparators in different intervals could be changing. The dynamic regret is defined as

DR(u(1), . . . ,u(T ), i) =
T∑
t=1

ft(xi(t))−
T∑
t=1

ft(u(t))

which compares local learners against any sequence of comparators u(1), . . . ,u(T ) ∈ K.
Note that in the centralized setting with n = 1, D-OCO reduces to the standard online con-

vex optimization (OCO) problem (Hazan, 2016), and there exist plenty of algorithms with (nearly)
optimal bounds on adaptive regret (Hazan and Seshadhri, 2007, 2009; Daniely et al., 2015; Jun
et al., 2017; Zhang et al., 2018b, 2019a, 2021; Yang et al., 2024) and dynamic regret (Zhang
et al., 2018a; Zhao et al., 2020, 2024; Baby and Wang, 2022). However, to the best of our knowl-
edge, none of these algorithms has been extended into the general D-OCO problem. It is possi-
bly due to the difficulty in handling their commonly used two-level framework—running multiple
expert-algorithms in parallel and combining their decisions with a meta-algorithm. In contrast,
there has been a surge of interest in developing decentralized variants of the classical online gra-
dient descent (OGD) algorithm (Zinkevich, 2003) for minimizing the dynamic regret (Shahram-
pour and Jadbabaie, 2018; Dixit et al., 2019; Zhang et al., 2019b; Lu et al., 2020; Li et al., 2022;
Eshraghi and Liang, 2022). Unfortunately, these studies focus on the restricted dynamic regret with
u(t) = x∗(t) = argminx∈K ft(x), which is too pessimistic (Zhang et al., 2018a). Moreover, even
for the restricted dynamic regret, the best existing algorithm can only achieve a suboptimal bound
of O(n5/4ρ−1/2

√
T (1 + P ∗

T )) in general, where P ∗
T =

∑T
t=2 ∥x∗(t) − x∗(t − 1)∥2 denotes the

path-length of the restricted comparators (Shahrampour and Jadbabaie, 2018).
In this paper, we propose black-box reductions that can minimize adaptive regret and dynamic

regret of D-OCO by simply utilizing existing (nearly) optimal algorithms in OCO. Specifically, our
black-box reductions are established in a two-stage way. First, we show novel reductions from min-
imizing these two metrics of D-OCO to minimizing them of OCO with delayed feedback. Second,
we adopt an existing black-box reduction from the delayed OCO to the standard OCO (Joulani et al.,
2013). It is worth noting that Joulani et al. (2013) only focus on the traditional regret in (1). For
the first time, we prove that this black-box technique can also convert non-delayed algorithms for
adaptive regret and dynamic regret into the delayed setting, which may be of independent interest.

1. The Õ(·) notation hides constant factors as well as polylogarithmic factors in n, instead of T .
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Table 1: Summary of upper and lower bounds on adaptive regret and dynamic regret of D-OCO.
Abbreviations: convex → cvx, strongly convex → scvx.

Metric ft,i(x) Upper Bound Lower Bound

Adaptive Regret
cvx O(nρ−1/4

√
τ(log T ) log(Tn))

Theorem 5
Ω(nρ−1/4√τ)

Wan et al. (2024b)

scvx O(nρ−1/2(log T )2 log(Tn))
Theorem 6

Ω(nρ−1/2 log τ)
Wan et al. (2024b)

Dynamic Regret cvx O(nρ−1/4
√
T (1 + PT ) log(Tn))

Theorem 7
Ω(nρ−1/4

√
T (1 + PT ))

Theorem 8

Then, combining with the algorithms in Jun et al. (2017) and Hazan and Seshadhri (2007, 2009),
we can achieve Õ(nρ−1/4√τ log T ) and Õ(nρ−1/2(log T )3) adaptive regret bounds for convex and
strongly convex functions, respectively. These two bounds nearly match existing lower bounds over
any fixed interval of length τ , i.e., Ω(nρ−1/4√τ) for convex functions and Ω(nρ−1/2 log τ) for
strongly convex functions (Wan et al., 2024b). Moreover, combining with the algorithm in Zhang
et al. (2018a), we can achieve an Õ(nρ−1/4

√
T (1 + PT ) log T ) dynamic regret bound for convex

functions, where PT =
∑T

t=2 ∥u(t)− u(t− 1)∥2 denotes the path-length of any sequence of com-
parators. Finally, we also demonstrate that this bound is nearly optimal by deriving the first lower
bound for dynamic regret of D-OCO, i.e, Ω(nρ−1/4

√
T (1 + PT )). A detailed comparison between

these upper and lower bounds is presented in Table 1.

2. Related Work

In this section, we briefly review related work on OCO and D-OCO, especially those about adaptive
regret and dynamic regret.

2.1. Online Convex Optimization (OCO)

Over the past two decades, there are extensive studies on regret, adaptive regret, and dynamic regret
of OCO. Specifically, OGD is sufficient to achieve the optimal O(

√
T ) and O(log T ) regret bounds

for convex and strongly convex functions, respectively (Zinkevich, 2003; Hazan et al., 2007; Aber-
nethy et al., 2008; Hazan and Kale, 2014). Moreover, Hazan et al. (2007) consider the case with
exponentially concave (abbr. exp-concave) functions that are more general than strongly convex
functions, and propose online Newton step (ONS) to achieve an O(d log T ) regret bound.

The adaptive regret is first introduced by Hazan and Seshadhri (2007, 2009) as in the following
weaker form (omitting the subscript of the learner 1 for brevity):

AR(T ) = max
[s,q]⊆[T ]

(
q∑

t=s

ft(x(t))−min
x∈K

q∑
t=s

ft(x)

)

which is the maximum regret over any interval. They first propose a meta-algorithm called follow-
the-leading-history (FLH), which activates a new instance of a low-regret algorithm per round as
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an expert and combines these experts via an expert-tracking technique. By using OGD and ONS
as the expert-algorithm, the weakly adaptive regret of FLH can be bounded by O(

√
T log T ) and

O(d log T ) for convex and exp-concave functions, respectively. However, FLH needs to maintain
O(t) experts per round, which could be time-consuming. Therefore, Hazan and Seshadhri (2007,
2009) have also developed an efficient variant of FLH (EFLH) with only O(log t) experts per round,
while weakening the previous two bounds to O(

√
T (log T )3/2) and O(d(log T )2). Nonetheless,

one limitation of their results is that the bound for convex functions is meaningless for intervals of
length O(

√
T ). To address this issue, Daniely et al. (2015) propose the strengthened adaptive regret

defined in (2), which emphasizes the dependency on the interval length, and develop a new meta-
algorithm to achieve an O(

√
τ log T ) adaptive regret bound for convex functions. Later, Jun et al.

(2017) develop an improved meta-algorithm called coin betting for changing environment (CBCE)
to obtain an O(

√
τ log T ) adaptive regret bound for convex functions. Both meta-algorithms of

Daniely et al. (2015) and Jun et al. (2017) also only maintain O(log t) experts per round. Moreover,
Zhang et al. (2018b) show that by using OGD as the expert-algorithm, EFLH can exploit the strong
convexity of functions to achieve an O((log T )2) adaptive regret bound. The smoothness of func-
tions has also been exploited to improve the adaptive regret when the comparator has a small loss
(Zhang et al., 2019a). Recently, novel meta-algorithms (Zhang et al., 2021; Yang et al., 2024) have
been proposed to universally achieve the best adaptive regret for different types of functions.

The study of dynamic regret dates back to the pioneering work of Zinkevich (2003), who shows
that OGD can achieve an O(

√
T (1 + PT )) dynamic regret bound. This result remains unchanged

until the work of Zhang et al. (2018a), who propose a novel algorithm called Ader to achieve an
O(
√
T (1 + PT )) dynamic regret bound. The key idea of Ader is to run O(log T ) instances of OGD

with different learning rates and track the best one via a meta-algorithm. They also establish an
Ω(
√
T (1 + PT )) lower bound for dynamic regret of OCO, which implies that Ader is optimal for

convex functions. Later, Zhao et al. (2020, 2024) propose new algorithms for smooth functions to
replace the

√
T part in the dynamic regret of Zhang et al. (2018a) with some data-dependent terms.

When considering an improper learning setting, Baby and Wang (2021) demonstrate that FLH can
be utilized to achieve O(d7/2T 1/3C

2/3
T poly(log T )) and O(d2T 1/3C

2/3
T poly(log T )) dynamic re-

gret bounds for exp-concave and strongly convex functions respectively, where CT =
∑T

t=2 ∥u(t)−
u(t− 1)∥1. The improper assumption is later removed by Baby and Wang (2022), who further im-
prove the previous two bounds to O(d3T 1/3C

2/3
T poly(log T )) and O(d1/3T 1/3C

2/3
T poly(log T )).

Additionally, the restricted dynamic regret with u(t) = x∗(t) has also attracted much attention
(Jadbabaie et al., 2015; Besbes et al., 2015; Mokhtari et al., 2016; Yang et al., 2016; Zhang et al.,
2017a, 2018b; Baby and Wang, 2019; Zhao and Zhang, 2021; Wan et al., 2021, 2023). However,
as discussed in Zhang et al. (2018a), the restricted one is too pessimistic and fails to recover the
traditional regret even for stationary environments. Moreover, different from the general dynamic
regret that is commonly minimized by a two-level framework, the restricted one can even be simply
minimized by OGD for smooth and strongly convex functions (Mokhtari et al., 2016).

We also notice that several algorithms (Zhang et al., 2020; Cutkosky, 2020; Wang et al., 2024)
have been proposed to minimize adaptive regret and dynamic regret simultaneously.

2.2. Decentralized Online Convex Optimization (D-OCO)

Compared with OCO, the main challenge of D-OCO is that each local learner only has direct ac-
cess to the local function, instead of the global function. To address this challenge, the pioneering
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work of Yan et al. (2013) proposes a decentralized variant of OGD (D-OGD). Their key idea is to
first compute a weighted average decision among local learners via a standard gossip step (Xiao
and Boyd, 2004) and then perform a gradient descent step according to the local function. Note
that the use of the standard gossip step not only leads to average consensus, i.e., all local decisions
can asymptotically converge to their average, but also ensures that the average decision is virtu-
ally updated by applying OGD with the average gradient. Based on these properties, they show
that D-OGD can achieve O(n5/4ρ−1/2

√
T ) and O(n3/2ρ−1 log T ) for convex and strongly convex

functions, respectively.
After that, decentralized variants of many other OCO algorithms have been proposed to min-

imize the regret under different scenarios (Hosseini et al., 2013; Zhang et al., 2017b; Wan et al.,
2020, 2022c; Wang et al., 2023; Wan et al., 2024a,b). However, most of them are still based on the
standard gossip step, and cannot improve the regret of D-OGD. The only exception is the work of
Wan et al. (2024a,b) that exploits an accelerated gossip strategy (Liu and Morse, 2011; Ye et al.,
2023) and a blocking update mechanism to develop novel D-OCO algorithms with Õ(nρ−1/4

√
T )

and Õ(nρ−1/2 log T ) regret bounds for convex and strongly convex functions, respectively. They
also provide Ω(nρ−1/4

√
T ) and Ω(nρ−1/2 log T ) lower regret bounds for convex and strongly con-

vex functions respectively, which indicate the near optimality of their algorithms.
Besides the regret, previous studies have also considered the restricted dynamic regret of D-

OCO. Specifically, Shahrampour and Jadbabaie (2018) propose a non-Euclidean variant of D-OGD,
and establish an O(n5/4ρ−1/2

√
T (1 + P ∗

T )) restricted dynamic regret bound for convex functions.
Compared with existing results on the regret of D-OCO and the dynamic regret of OCO, this bound
is suboptimal in terms of n, ρ, and P ∗

T . Although many subsequent studies have been devoted
to improving this bound, they typically require additional assumptions, including the smoothness
and/or strong convexity of functions (Dixit et al., 2019; Zhang et al., 2019b; Lu et al., 2020; Li
et al., 2022; Eshraghi and Liang, 2022). Moreover, these improved algorithms are still developed
by extending OGD, which owes to the previously mentioned power of OGD in minimizing the
restricted dynamic regret for smooth and strongly convex functions.

3. Main Results

In this section, we first present a novel reduction from D-OCO to the delayed OCO, and then revisit
an existing reduction for the delayed OCO. Finally, we provide theoretical guarantees on adaptive
regret and dynamic regret of D-OCO. All proofs can be found in the appendix.

3.1. Assumptions

Following previous studies on D-OCO (Wan et al., 2024a,b), we also require several common as-
sumptions.

Assumption 1 At each round t ∈ [T ], the loss function ft,i(x) of each learner i ∈ [n] is G-
Lipschitz over K, i.e., it holds that |ft,i(x)− ft,i(y)| ≤ G∥x− y∥2, ∀x,y ∈ K.

Assumption 2 The set K contains the origin, i.e., 0 ∈ K, and its diameter is bounded by D, i.e., it
holds that ∥x− y∥2 ≤ D, ∀x,y ∈ K.

Assumption 3 At each round t ∈ [T ], the loss function ft,i(x) of each learner i ∈ [n] is α-strongly
convex over K, i.e., it holds that ft,i(y) ≥ ft,i(x) + ⟨∇ft,i(x),y − x⟩+ α

2 ∥y − x∥22, ∀x,y ∈ K.
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Assumption 4 The communication matrix P ∈ Rn×n is supported on the graph G = ([n], E),
symmetric, and doubly stochastic, which satisfies:

• Pij > 0 only if (i, j) ∈ E or i = j;
•
∑n

j=1 Pij =
∑

j∈Ni
Pij = 1,∀i ∈ [n];

•
∑n

i=1 Pij =
∑

i∈Nj
Pij = 1,∀j ∈ [n];

where Ni = {j ∈ [n]|(i, j) ∈ E} ∪ {i} for any i ∈ [n]. Moreover, P is positive semidefinite, and
its second largest singular value denoted by σ2(P ) is strictly smaller than 1.

Note that Assumption 3 with α = 0 reduces to the general convex case, and we have ρ = 1−σ2(P )
from Assumption 4.

3.2. Our Reduction from D-OCO to Delayed OCO

Before introducing our techniques, we notice that the analysis of most previous D-OCO algorithms
(Yan et al., 2013; Hosseini et al., 2013) relies on the following relaxation:

ft(xi(t))− ft(x) = O

(
n ⟨ḡ(t), x̄(t)− x⟩+ nmax

i∈[n]
∥xi(t)− x̄(t)∥2

)
(3)

for any i ∈ [n] and x, x̄(t) ∈ K, where ḡ(t) = 1
n

∑n
i=1∇ft,i(xi(t)) denotes the average gradient at

round t. For these algorithms, there exactly exists a suitable x̄(t) that is close to each local decision
xi(t) and has a small value of ⟨ḡ(t), x̄(t)⟩, e.g., x̄(t) = 1

n

∑n
i=1 xi(t) in D-OGD (Yan et al., 2013).

However, it is difficult to apply this methodology for extending those two-level algorithms with
adaptive regret and dynamic regret bounds (Jun et al., 2017; Hazan and Seshadhri, 2007, 2009;
Zhang et al., 2018a) into D-OCO. To be precise, a natural idea is to maintain multiple experts and
a meta-algorithm for each local learner i, and set the local decision xi(t) as a weighted average
of decisions x1

i (t), . . . ,x
M
i (t) generated by these experts, where M denotes the number of experts.

Moreover, the expert-algorithm should be an existing D-OCO algorithm, e.g., D-OGD, such that the
decision of every expert j for each local learner i, i.e., xj

i (t), can converge to some x̄j(t). By further
assuming that the meta-algorithm of each local learner maintains the same weight w1, . . . , wM , we
have xi(t) =

∑M
j=1wjx

j
i (t) and it is intuitive to set x̄(t) =

∑M
j=1wjx̄

j(t). Unfortunately, even
under this ideal assumption, the distance between xi(t) and x̄(t) could be unsatisfactory because
the heterogeneity of experts, e.g., different learning rates, leads to different convergence rates of
their decisions x1

i (t), . . . ,x
M
i (t).

To address the above challenge, we first still consider an ideal case, in which arbitrary commu-
nication steps are allowed per round. Our main idea is to treat the two-level structure that needs to
be maintained by each local learner i as a black box, and only focus on the black-box output at each
round t, which is now denoted as a preparatory decision x̂i(t). By defining x̄(t) = 1

n

∑n
i=1 x̂i(t),

one can apply multiple gossip steps (Xiao and Boyd, 2004; Liu and Morse, 2011) over these prepara-
tory decisions to generate a decision xi(t) that approximates x̄(t) well for each local learner i. Thus,
the remaining challenge is to control the term ⟨ḡ(t), x̄(t)⟩ in (3) by generating appropriate prepara-
tory decisions. Note that in the analysis of those previous algorithms (Yan et al., 2013; Hosseini
et al., 2013), this term is generally bounded due to a global property of x̄(t), i.e., it can be simply
computed based on historical average gradients. However, it is highly non-trivial to establish this
global property for our x̄(t) due to both the two-level structure and the black-box way. To this end,
we further apply multiple gossip steps over those local gradients to generate a local approximation

6



BLACK-BOX REDUCTIONS FOR DECENTRALIZED OCO IN CHANGING ENVIRONMENTS

gi(t) for the average gradient ḡ(t), and notice that

n⟨ḡ(t), x̄(t)⟩ =
n∑

i=1

⟨ḡ(t), x̂i(t)⟩ =
n∑

i=1

⟨gi(t), x̂i(t)⟩+O

(
nmax

i∈[n]
∥ḡ(t)− gi(t)∥2

)
. (4)

From (4), we only need to update x̂i(t) according to the local approximation gi(t), which can be
implemented by invoking an existing two-level algorithm locally.

Now, we proceed to extend the above idea into the practical case, in which only one communi-
cation step is allowed per round. Inspired by Wan et al. (2024a,b), we adopt the blocking updating
mechanism and the accelerated gossip strategy (Liu and Morse, 2011). The former technique al-
lows us to utilize multiple communication steps over each block, and the latter one is critical for
controlling the effect of n and ρ on our theoretical results. Specifically, according to the blocking
updating mechanism, we divide total T rounds into Z = T/(2L) blocks, where L will be specified
later, and assume that Z is an integer without loss of generality. For each local learner i at all rounds
in any block z, we will maintain a fixed preparatory decision as well as a fixed decision, and denote
them as x̂i(z) and xi(z), respectively. To make xi(z) close to the average preparatory decision, i.e.,
x̄(z) = 1

n

∑n
i=1 x̂i(z), we simply set xi(1) = x̂i(1) = 0, and generate xi(z+1) via the accelerated

gossip strategy, i.e, iteratively performing the following update for kx = 0, 1, . . . , L− 1:

xkx+1
i (z + 1) = (1 + θ)

∑
j∈Ni

Pijx
kx
j (z + 1)− θxkx−1

i (z + 1)

during the first L rounds of each block z, and setting xi(z+1) = xL
i (z+1) at the end of this block,

where x0
i (z + 1) = x−1

i (z + 1) = x̂i(z + 1) and θ will be specified later.
Then, we notice that the preparatory decision x̂i(z + 1) is required at the beginning of block z,

but has not been determined. From our previous discussions about (4), to generate an appropriate
x̂i(z + 1), we originally require a local approximation gi(z) for the cumulative average gradient
over each block z, i.e., ḡ(z) = 1

n

∑n
i=1

∑
t∈Tz ∇ft,i(xi(z)), where Tz = {2(z−1)L+1, . . . , 2zL}.

However, such an approximation is not convenient for exploiting the strong convexity of functions
in the black-box way. To tackle this issue, inspired by the strongly convex algorithm of Wan et al.
(2024a,b), we will maintain gi(z) to approximate ḡ(z) = 1

n

∑n
i=1

∑
t∈Tz(∇ft,i(xi(z))− αxi(z)),

where α is given by Assumption 3. Correspondingly, we further pursue a small value of ℓz,i(x̂i(z)),
where ℓz,i(x) = ⟨gi(z),x⟩+ αL∥x∥22 generalizes the linear loss in (4) by adding a quadratic term.
Moreover, during each block z ≥ 2, we actually can only approximate ḡ(z − 1) instead of ḡ(z),
because the cumulative gradient of this block has not been collected at its beginning. Therefore, we
set g0

i (z − 1) = g−1
i (z − 1) =

∑
t∈Tz−1

(∇ft,i(xi(z − 1))− αxi(z − 1)), and iteratively perform
the following update for kg = 0, 1, . . . , L− 1:

g
kg+1
i (z − 1) = (1 + θ)

∑
j∈Ni

Pijg
kg
j (z − 1)− θg

kg−1
i (z − 1)

during the remaining L rounds of each block z ≥ 2. In this way, we can finally set gi(z) = gL
i (z)

for any z ∈ [Z], but it is worth noting that only gi(1), . . . ,gi(z − 2) are available at the beginning
of block z. This implies that x̂i(z + 1) should be computed with a suitable delayed OCO algorithm
D, instead of directly using an existing two-level algorithm as in the ideal case.

Based on these discussions, we are ready to reduce D-OCO to the delayed OCO problem, and
the detailed procedure is summarized in Algorithm 1. Here, to simplify the initialization of each
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Algorithm 1 Black-Box Reduction from D-OCO to Delayed OCO
1: Input: L, θ, α, and a delayed OCO algorithm D with the initial decision 0
2: Create an instance Di of D, get x̂i(1) = 0 from Di, and set xi(1) = x̂i(1), ∀i ∈ [n]
3: for z = 1, . . . , T/(2L) do
4: Define ℓz,i(x) = ⟨gi(z),x⟩+ αL∥x∥22 and send it to Di once gi(z) is available, ∀i ∈ [n]
5: Get x̂i(z + 1) from Di, and set x0

i (z + 1) = x−1
i (z + 1) = x̂i(z + 1),∀i ∈ [n]

6: for t = 2(z − 1)L+ 1, . . . , 2zL do
7: for each local learner i ∈ [n] do
8: Play xi(z), query ∇ft,i(xi(z)), and set kx = t−2(z−1)L−1, kg = t− (2z−1)L−1
9: if t ≤ (2z − 1)L then

10: Update xkx+1
i (z + 1) = (1 + θ)

∑
j∈Ni

Pijx
kx
j (z + 1)− θxkx−1

i (z + 1)
11: else if 2 ≤ z then
12: Update g

kg+1
i (z − 1) = (1 + θ)

∑
j∈Ni

Pijg
kg
j (z − 1)− θg

kg−1
i (z − 1)

13: end if
14: end for
15: end for
16: Set xi(z + 1) = xL

i (z + 1),∀i ∈ [n], and if 2 ≤ z, set gi(z − 1) = gL
i (z − 1), ∀i ∈ [n]

17: Set g0
i (z) = g−1

i (z) =
∑2zL

t=2(z−1)L+1(∇ft,i(xi(z))− αxi(z)), ∀i ∈ [n]
18: end for

local decision, we further assume that the delayed OCO algorithm D is initialized with 0. More-
over, according to lines 2, 4, 5, and 16 of Algorithm 1, each instance Di of D needs to generate the
preparatory decision x̂i(z) with only ℓ1,i(x), . . . , ℓz−3,i(x). In the following, we establish theoreti-
cal guarantees on adaptive regret and dynamic regret of Algorithm 1, respectively.

Theorem 1 Let ot = ⌈t/(2L)⌉ denote the block index of any round t, and

θ =
1

1 +
√

1− σ2
2(P )

, L =

⌈ √
2 ln(T

√
14n)

(
√
2− 1)

√
1− σ2(P )

⌉
. (5)

Under Assumptions 1, 2, 3, and 4, Algorithm 1 with θ, L defined in (5) ensures

q∑
t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x)) ≤
n∑

j=1

oq−1∑
z=os+1

(ℓz,j(x̂j(z))− ℓz,j(x)) + 4nGD(2 + L) + 2nαD2

for any [s, q] ⊆ [T ], x ∈ K, and i ∈ [n].

Theorem 2 Let mz = 2(z − 1)L + 1 and recall that Z = T/(2L). Under Assumptions 1, 2, 3,
and 4, Algorithm 1 with θ, L defined in (5) ensures

Z∑
z=1

2zL∑
t=2(z−1)L+1

n∑
j=1

(ft,j(xi(z))− ft,j(u(t)))

≤
n∑

j=1

Z∑
z=1

(ℓz,j(x̂j(z))− ℓz,j(u(mz))) + min {nDGT, 2nLGPT }+ 8nGD + 2nαD2

(6)

for any sequence of comparators u(1), . . . ,u(T ) ∈ K and i ∈ [n].
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From Theorem 1, the regret of Algorithm 1 over any interval [s, q] ⊆ [T ] can be bounded by
the total regret of D1, . . . ,Dn over the interval [os + 1, oq − 1]. Therefore, it actually provides a
reduction from minimizing the adaptive regret of D-OCO to minimizing the adaptive regret of the
delayed OCO with loss functions ℓ1,i(x), . . . , ℓZ,i(x) for all i ∈ [n]. Similarly, Theorem 2 provides
a reduction from minimizing the dynamic regret of D-OCO to minimizing the dynamic regret of the
delayed OCO with these loss functions.

Remark 1 One possible concern about the reduction for dynamic regret is that the comparators at
two sides of (6) are different. Intriguingly, from the definitions of mz and Z in Theorem 2, we have

Z∑
z=2

∥u(mz)− u(mz−1)∥2 ≤
Z∑

z=2

2(z−1)L+1∑
t=2(z−2)L+2

∥u(t)− u(t− 1)∥2 ≤
T∑
t=2

∥u(t)− u(t− 1)∥2 (7)

which implies that the difference of comparators will not affect the final dependence on the path-
length PT . Moreover, it is worth noting that the function ℓz,i(x) is (2αL)-strongly convex for any
z ∈ [Z] and i ∈ [n], which allows us to exploit the strong convexity during the reductions provided
by both Theorems 1 and 2.

3.3. Revisiting An Existing Reduction for Delayed OCO

Note that although many efforts have been devoted to the delayed OCO (Joulani et al., 2013; Quan-
rud and Khashabi, 2015; Joulani et al., 2016; Flaspohler et al., 2021; Wan et al., 2022a,b, 2024c,d),
most of them focus on the traditional regret, rather than the two metrics for changing environments.
The only exception is the work of Wan et al. (2024d), which develops a variant of Ader (Zhang
et al., 2018a) for minimizing the dynamic regret under arbitrary delays. Moreover, they have also
established a lower bound to show the optimality of the delayed Ader in the worst case. Thus,
one can simply combine our Theorem 2 with the delayed Ader to minimize the dynamic regret of
D-OCO. However, for the generality of our reductions, we revisit an existing black-box technique
of Joulani et al. (2013) for delayed OCO, though they only establish guarantees on the traditional
regret. The detailed procedure of this technique is outlined in Algorithm 2, which can convert any
non-delayed OCO algorithm B to handle arbitrary delays.

Specifically, here we consider a sequence of convex loss functions ℓ1(x), . . . , ℓZ(x), and assume
that each function ℓz(x) can only be received at the end of round z + cz − 1 for any z ∈ [Z], where
cz ≥ 1 denotes the delay. The main idea of Algorithm 2 is to pool multiple instances of the base
algorithm B as needed. In the pool, if one instance is ready to make the next decision, it is marked
as free. In each round z ∈ [Z], a free instance will be selected from the pool to make the decision
x(z), or created newly when there does not exist any free instance. Then, this instance will be halted
for waiting the function ℓz(x). Due to effect of arbitrary delays, a set of feedback {ℓk(x)|k ∈ Fz}
could be received at the end of each round z, where Fz = {k ∈ [Z]|k+ ck − 1 = z}. Thus, we can
feed each function in this set to update the corresponding instance, which is then marked as free.
Moreover, since the base algorithm B may have an additional assumption on the range of loss value,
in line 7 of Algorithm 2, a transformed function ℓ̂k(x) = γ1ℓk(x) + γ2 is actually utilized in the
update, where γ1 is a scaling factor and γ2 is a shifting factor.

Let cmax = max{c1, . . . , cZ} denote the maximum delay. A critical property of this technique
is that it maintains at most cmax instances, which has been utilized to convert the R(Z) regret of the
base algorithm to the cmaxR(Z/cmax) regret in the delayed case (Joulani et al., 2013). In this paper,
we utilize this property to derive the following reductions for adaptive regret and dynamic regret.
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Algorithm 2 Black-Box Reduction for Delayed OCO (Joulani et al., 2013)
1: Input: a base OCO algorithm B, a scaling factor γ1, and a shifting factor γ2
2: Set v = 1, and create an instance of B denoted as B1 with the initial decision 0
3: for z = 1, . . . , Z do
4: Pick a free instance of B, i.e., Biz with iz ∈ [v] has already received the required feedback
5: Use Biz to make the decision x(z), and then halt it for waiting the function ℓz(x)
6: Receive delayed functions {ℓk(x)|k ∈ Fz}, where Fz = {k ∈ [Z]|k + ck − 1 = z}
7: For any k ∈ Fz , feed ℓ̂k(x) = γ1ℓk(x) + γ2 to update the instance Bik , and mark it as free
8: If there does not exist any free instance, set v = v + 1 and create a new instance Bv

9: end for

Theorem 3 Let τ = q − s+ 1. Assume that the non-delayed B can enjoy
q∑

z=s

(
ℓ̂z(x(z))− ℓ̂z(x)

)
≤ C1τ

β1

(
1 + C2(log2(Z + 1))β2

)
(8)

for any interval [s, q] ⊆ [Z] and x ∈ K, where C1 > 0, C2 > 0, 1 > β1 ≥ 0, and β2 > 0 are some
constants. Then, for any interval [s, q] ⊆ [Z] and x ∈ K, Algorithm 2 ensures

q∑
z=s

(ℓz(x(z))− ℓz(x)) ≤
C1

γ1
τβ1c1−β1

max

(
1 + C2(log2(Z + 1))β2

)
.

Theorem 4 Let PZ =
∑Z

z=2 ∥u(z)− u(z − 1)∥2. Assume that the non-delayed B can enjoy

Z∑
z=1

(
ℓ̂z(x(z))− ℓ̂z(u(z))

)
≤ C1Z

β (1 + C2PZ)
1−β (9)

for any sequence of comparators u(1), . . . ,u(Z) ∈ K, where C1, C2, and β ∈ (0, 1) are some
constants. Then, for any sequence of comparators u(1), . . . ,u(Z) ∈ K, Algorithm 2 ensures

Z∑
z=1

(ℓz(x(z))− ℓz(u(z))) ≤
C1

γ1
Zβc1−β

max (1 + C2PZ)
1−β .

Recall that the assumptions in Theorems 3 and 4 can be respectively satisfied by many existing
algorithms for adaptive regret and dynamic regret. For example, by using OGD (Zinkevich, 2003;
Hazan et al., 2007) as the expert, CBCE (Jun et al., 2017) and EFLH (Hazan and Seshadhri, 2007,
2009) can satisfy (8) with β1 = β2 = 1/2 and β1 = 0, β2 = 2 for convex and strongly convex
functions, respectively. For the dynamic rerget of convex functions, Ader (Zhang et al., 2018a) can
satisfy (9) with β = 1/2. Note that for these results, the two factors γ1 and γ2 only need to be
some constants that will be specified later. Therefore, Theorems 3 and 4 can extend these existing
guarantees into the delayed case by mainly introducing a multiplicative factor of the maximum
delay cmax. Specifically, we can derive O(

√
cmaxτ logZ) and O(cmax(logZ)2) adaptive regret

bounds for convex and strongly convex functions respectively, as well as an O(
√

cmaxZ(1 + PZ))
dynamic regret bound for convex functions. These two adaptive regret bounds can nearly match
existing worst-case lower bounds for the regret of delayed OCO over any fixed interval of length τ
(Weinberger and Ordentlich, 2002). Moreover, this dynamic regret bound also matches the existing
worst-case lower bound for the dynamic regret of delayed OCO (Wan et al., 2024d).

10
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Remark 2 First, one may notice that Algorithm 2 could be resource-intensive for maintaining too
many instances of the base algorithm B when cmax is very large. However, in our Algorithm 1, we
only need to utilize Algorithm 2 to handle a constant delay of cmax = cz = 3, which is almost
as efficient as that of B. Moreover, although the effect of the constant delay on theoretical results
actually can be ignored, Algorithm 2 is very significant as it provides a convenient way to exploit
existing guarantees. Second, besides the above results, we can combine a slight modification of
Theorem 4 with Baby and Wang (2022) to derive an improved O(d1/3c

2/3
maxZ1/3C

2/3
Z poly(logZ))

dynamic regret bound for strongly convex functions in the delayed case, where CZ =
∑Z

z=2 ∥u(z)−
u(z − 1)∥1. It is also possible to bound the dynamic regret of D-OCO with strongly convex func-
tions by combining Theorem 2 with this result. However, the corresponding dependence on log T ,
log n, and ρ would not be determined, because the dependence of their original bound on the strong
convexity and Lipschitz constant is unclear. For this reason, we leave this problem as a future work.
Finally, since Algorithm 2 actually supports the exploitation of exp-concave functions, one may also
want to extend our reductions for D-OCO into exp-concave functions. However, there still lacks a
theoretical guarantee on the traditional regret of D-OCO with exp-concave functions. Thus, this
extension seems highly non-trivial and will also be investigated in the future.

3.4. Theoretical Guarantees on Adaptive Regret and Dynamic Regret of D-OCO

Now, we demonstrate the power of our reductions by establishing the following guarantees on adap-
tive regret and dynamic regret of D-OCO.

Theorem 5 Let B denote the combination of CBCE (Jun et al., 2017) and OGD for convex func-
tions (Zinkevich, 2003). Under Assumptions 1, 2, 3 with α = 0, and 4, by setting θ, L as in (5), and
D to be Algorithm 2 with B, γ1 = 1/(8LGD), and γ2 = 1/2, Algorithm 1 ensures
q∑

t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x)) ≤ 32nGD
√
6L(q − s)

(
4 +

√
7 log2(T + 1)

)
+ 4nGD(2 + L)

for any [s, q] ⊆ [T ], x ∈ K, and i ∈ [n], where ot = ⌈t/(2L)⌉ denotes the block index of round t.

Combining Theorem 5 with the value of L in (5), we can obtain an O(nρ−1/4
√

τ(log T ) log(Tn))
adaptive regret bound for convex functions, where τ denotes any interval length. It matches the
existing Ω(nρ−1/4√τ) lower bound (Wan et al., 2024b) up to polylogarithmic factors on n and T .
Moreover, the values of γ1 and γ2 in Theorem 5 are chosen to ensure that the loss value suffered by
B belongs to [0, 1], which is required by CBCE (Jun et al., 2017). In the following, we simply set
γ1 = 1 and γ2 = 0.

Theorem 6 Let B denote the combination of EFLH (Hazan and Seshadhri, 2007, 2009) and OGD
for strongly convex functions (Hazan et al., 2007). Under Assumptions 1, 2, 3 with α > 0, and 4,
by setting θ, L as in (5), and D to be Algorithm 2 with B, γ1 = 1, and γ2 = 0, Algorithm 1 ensures

q∑
t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x))

≤3(4G+ 6αD)2nL

2α

(
1 + 7(log2(T + 1))2

)
+ 4nGD(2 + L) + 2nαD2

for any [s, q] ⊆ [T ], x ∈ K, and i ∈ [n], where ot = ⌈t/(2L)⌉ denotes the block index of round t.
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Combining Theorem 6 with the value of L in (5), we can further derive an adaptive regret bound
of O(nρ−1/2(log T )2 log(Tn)) for strongly convex functions, which removes the sublinear depen-
dence of the previous bound on the interval length, and thus is much better over those long intervals.
Moreover, this bound can match the existing Ω(nρ−1/2 log τ) lower bound (Wan et al., 2024b) up
to polylogarithmic factors on n and T . If ignoring the computational efficiency, we can also replace
EFLH in Theorem 6 with FLH (Hazan and Seshadhri, 2007, 2009) to achieve a better adaptive regret
bound of O(nρ−1/2(log T ) log(Tn)) for strongly convex functions.

Theorem 7 Let B denote Ader (Zhang et al., 2018a). Under Assumptions 1, 2, 3 with α = 0, and
4, by setting θ, L as in (5), and D to be Algorithm 2 with B, γ1 = 1, and γ2 = 0, Algorithm 1
ensures

Z∑
z=1

2zL∑
t=2(z−1)L+1

n∑
j=1

(ft,j(xi(z))− ft,j(u(t)))

≤n
(
3GD

√
7 + 10GD

)√
TL

(
3 +

12PT

7D

)
+ nG

√
2DLTPT + 8nGD

for any sequence of comparators u(1), . . . ,u(T ) ∈ K and i ∈ [n], where Z = T/(2L).

Combining Theorem 7 with the value of L in (5), we can obtain an O(nρ−1/4
√
T (1 + PT ) log(Tn))

dynamic regret bound for convex functions, and notice that this bound holds for any sequence of
comparators. Even if considering the restricted case with u(t) = x∗(t), our bound is much better
than the existing O(n5/4ρ−1/2

√
T (1 + P ∗

T )) bound for convex functions (Shahrampour and Jad-
babaie, 2018). This improvement benefits from the use of both the accelerated gossip strategy (Liu
and Morse, 2011) and Ader (Zhang et al., 2018a). Additionally, we also show that our dynamic
regret is nearly optimal for convex functions by establishing the following lower bound.

Theorem 8 Let L = ⌈TD/max{C,D}⌉ and K = [−D/(2
√
d), D/(2

√
d)]d which satisfies As-

sumption 2. Suppose L divides T , and n = 2(m + 1) ≤ 8L + 8 for some positive integer m. For
any D-OCO algorithm and C ∈ [0, TD], there exists a sequence of comparators u(1), . . . ,u(T )
satisfying PT ≤ C, a sequence of loss functions satisfying Assumption 1, a graph G = ([n], E), and
a matrix P satisfying Assumption 4 such that

T∑
t=1

n∑
j=1

(ft,j(x1(t))− ft,j(u(t))) ≥
n
√
πG
√
Dmax{C,D}T

32
√
2(1− σ2(P ))1/4

.

If n > 8L + 8, it is easy to derive an Ω(nT ) lower bound (see (39) in the appendix for details),
which can be trivially matched. Thus, we only need to consider the case with n ≤ 8L + 8, and
Theorem 8 essentially establishes an Ω(nρ−1/4

√
T (1 + PT )) lower bound. It can match the upper

bound derived from Theorem 7 up to polylogarithmic factors on n and T .

4. Conclusion

This paper proposes black-box reductions that allow us to minimize the adaptive regret and dynamic
regret of D-OCO by simply exploiting existing OCO algorithms for these two metrics. Based on
these reductions, we have established nearly optimal adaptive regret bounds for D-OCO with convex
and strongly convex functions, as well as a nearly optimal dynamic regret bound for D-OCO with
convex functions.
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Appendix A. Proof Theorem 1

Recall that Tz = {2(z − 1)L + 1, . . . , 2zL}, and ot = ⌈t/(2L)⌉ denotes the block index of any
round t. It is not hard to verify that

q∑
t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x))

=

2Los∑
t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x)) +

oq−1∑
z=os+1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(x))

+

q∑
t=2L(oq−1)+1

n∑
j=1

(ft,j(xi(ot))− ft,j(x))

≤
oq−1∑

z=os+1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(x)) + 4nGDL

(10)

where the inequality is due to 2Los−s+1 ≤ 2L, q−2L(oq−1) ≤ 2L, and ft,j(xi(ot))−ft,j(x) ≤
G∥xi(ot)− x∥2 ≤ GD under Assumptions 1 and 2.

To bound the first term in the right side of (10), we first introduce the following lemma, where
ḡ(z) = 1

n

∑n
i=1

∑
t∈Tz(∇ft,i(xi(z))− αxi(z)) and x̄(z) = 1

n

∑n
i=1 x̂i(z).

Lemma 1 Under Assumptions 1, 2, and 4, Algorithm 1 with θ and L defined in (5) ensures

∥gi(z)− ḡ(z)∥2 ≤
4L(G+ αD)

T
and ∥xi(z)− x̄(z)∥2 ≤

2D

T

for any i ∈ [n] and z ∈ [T/(2L)].2

Combining with Assumptions 1 and 3, for any z ∈ [T/(2L)], t ∈ Tz , j ∈ [n], and x ∈ K, we have

ft,j(xi(z))− ft,j(x)

≤ft,j(xj(z))− ft,j(x) +G∥xj(z)− xi(z)∥2
≤⟨∇ft,j(xj(z)),xj(z)− x⟩ − α

2
∥xj(z)− x∥22 +G∥xj(z)− x̄(z) + x̄(z)− xi(z)∥2

≤⟨∇ft,j(xj(z)), x̄(z)− x⟩ − α

2
∥xj(z)− x∥22 + ⟨∇ft,j(xj(z)),xj(z)− x̄(z)⟩+ 4GD

T

≤⟨∇ft,j(xj(z)), x̄(z)− x⟩ − α

2
∥xj(z)− x∥22 +G∥xj(z)− x̄(z)∥2 +

4GD

T

≤⟨∇ft,j(xj(z)), x̄(z)− x⟩ − α

2
∥xj(z)− x∥22 +

6GD

T

(11)

where the third and last inequalities are due to Lemma 1.
Moreover, for any x, it is easy to verify that

∥xj(z)− x∥22 =∥xj(z)− x̄(z)∥22 + 2⟨xj(z), x̄(z)− x⟩+ ∥x∥22 − ∥x̄(z)∥22
≥2⟨xj(z), x̄(z)− x⟩+ ∥x∥22 − ∥x̄(z)∥22.

(12)

2. In the analysis, we virtually compute gi(z) for z = T/(2L), though it is not utilized by our algorithm.
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Combining (11) with (12) and ℓz,j(x) = ⟨gj(z),x⟩+ αL∥x∥22, we have

oq−1∑
z=os+1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(x))

≤
oq−1∑

z=os+1

∑
t∈Tz

n∑
j=1

(
⟨∇ft,j(xj(z))− αxj(z), x̄(z)− x)⟩+ α

2

(
∥x̄(z)∥22 − ∥x∥22

))
+ 6nGD

=

oq−1∑
z=os+1

(
n⟨ḡ(z), x̄(z)− x⟩+ αnL

(
∥x̄(z)∥22 − ∥x∥22

))
+ 6nGD

≤
oq−1∑

z=os+1

〈ḡ(z), n∑
j=1

(x̂j(z)− x)

〉
+ αL

n∑
j=1

(
∥x̂j(z)∥22 − ∥x∥22

)+ 6nGD

=
n∑

j=1

oq−1∑
z=os+1

(
⟨ḡ(z), x̂j(z)− x⟩+ αL

(
∥x̂j(z)∥22 − ∥x∥22

))
+ 6nGD

≤
n∑

j=1

oq−1∑
z=os+1

(
⟨gj(z), x̂j(z)− x⟩+ αL

(
∥x̂j(z)∥22 − ∥x∥22

))
+ 6nGD

+
n∑

j=1

oq−1∑
z=os+1

∥ḡ(z)− gj(z)∥2 ∥x̂j(z)− x∥2

≤
n∑

j=1

oq−1∑
z=os+1

(
⟨gj(z), x̂j(z)− x⟩+ αL

(
∥x̂j(z)∥22 − ∥x∥22

))
+ 8nGD + 2nαD2

=
n∑

j=1

oq−1∑
z=os+1

(ℓz,j(x̂j(z))− ℓz,j(x)) + 8nGD + 2nαD2

where the second inequality is due to the definition of x̄(z) and Jensen’s inequality, and the last
inequality is due to Assumption 2 and Lemma 1. By substituting the above inequality into (10), we
complete this proof.

Appendix B. Proof of Lemma 1

Let Xk = [gk
1(z)

⊤;gk
2(z)

⊤; . . . ;gk
n(z)

⊤] ∈ Rn×d for any integer k ≥ −1. According to Algorithm
1, it is not hard to verify that the sequence of X1, . . . , XL satisfies

Xk+1 = (1 + θ)PXk − θXk−1. (13)

Let X̄ =
[
ḡ(z)⊤; . . . ; ḡ(z)⊤

]
, where ḡ(z) = 1

n

∑n
i=1

∑
t∈Tz(∇ft,i(xi(z))− αxi(z)). The update

rule in (13) enjoys the following property.

Lemma 2 (Proposition 1 in Ye et al. (2023)) Under Assumption 4, for L ≥ 1, the iterations of (13)
with θ defined in (5) ensure∥∥XL − X̄

∥∥
F
≤

√
14

(
1−

(
1− 1√

2

)√
1− σ2(P )

)L ∥∥X0 − X̄
∥∥
F
.
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For brevity, let c = 1− (1/
√
2). Because of Lemma 2, for any i ∈ [n] and z ∈ [T/(2L)], we have

∥gi(z)− ḡ(z)∥2 ≤
∥∥XL − X̄

∥∥
F
≤

√
14
(
1− c

√
1− σ2(P )

)L
∥X0 − X̄∥F . (14)

Then, according to the value of L defined in (5), we have

√
14
(
1− c

√
1− σ2(P )

)L
≤

√
14
(
1− c

√
1− σ2(P )

) ln(T
√
14n)

c
√

1−σ2(P )

≤
√
14
(
1− c

√
1− σ2(P )

) ln(T
√
14n)

ln(1−c
√

1−σ2(P ))
−1

=
1

T
√
n

(15)

where the last inequality is due to lnx−1 ≥ 1− x for any x > 0.
By substituting (15) into (14), for any i ∈ [n] and z ∈ [T/(2L)], we have

∥gi(z)− ḡ(z)∥2 ≤
∥X0 − X̄∥F

T
√
n

≤ ∥X0∥F + ∥X̄∥F
T
√
n

≤
2
√∑n

i=1

∥∥∑
t∈Tz (∇ft,i(xi(z))− αxi(z))

∥∥2
2

T
√
n

≤4L(G+ αD)

T

(16)

where the last inequality is due to the fact that Assumptions 1 and 2 ensure∥∥∥∥∥∑
t∈Tz

(∇ft,i(xi(z))− αxi(z))

∥∥∥∥∥
2

≤
∑
t∈Tz

∥∇ft,i(xi(z))− αxi(z)∥2 ≤ 2L(G+ αD). (17)

By repeating the above processes but considering the gap between xi(z) and x̄(z) = 1
n

∑n
i=1 x̂i(z),

it is easy to verify that

∥xi(z)− x̄(z)∥2 ≤
2
√∑n

i=1 ∥x̂i(z)∥22
T
√
n

≤ 2D

T

for any i ∈ [n] and z = 2, . . . , T/(2L). Moreover, for z = 1, we have xi(1) = x̂i(1) = 0, and thus

∥xi(1)− x̄(1)∥2 = 0 ≤ 2D

T
.

Finally, we complete this proof by combining the above two inequalities with (16).

Appendix C. Proof of Theorem 2

Recall that Tz = {2(z − 1)L+ 1, . . . , 2zL}. We first decompose the dynamic regret of Algorithm
1 as follows:

Z∑
z=1

2zL∑
t=2(z−1)L+1

n∑
j=1

(ft,j(xi(z))− ft,j(u(t)))

≤
Z∑

z=1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(u(mz))) +
Z∑

z=1

∑
t∈Tz

n∑
j=1

(ft,j(u(mz))− ft,j(u(t))) .

(18)
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Let ḡ(z) = 1
n

∑n
i=1

∑
t∈Tz(∇ft,i(xi(z)) − αxi(z)) and x̄(z) = 1

n

∑n
i=1 x̂i(z). Note that (11)

and (12) in the proof of Theorem 1 also hold here. Then, combining (11) with (12) and setting
x = u(mz), we have

Z∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(u(mz)))

≤
Z∑

z=1

∑
t∈Tz

n∑
j=1

(
⟨∇ft,j(xj(z))− αxj(z), x̄(z)− u(mz)⟩+

α

2

(
∥x̄(z)∥22 − ∥u(mz)∥22

))
+ 6nGD

=
Z∑

z=1

(
n⟨ḡ(z), x̄(z)− u(mz)⟩+ αnL

(
∥x̄(z)∥22 − ∥u(mz)∥22

))
+ 6nGD

≤
Z∑

z=1

〈ḡ(z), n∑
j=1

(x̂j(z)− u(mz))

〉
+ αL

n∑
j=1

(
∥x̂j(z)∥22 − ∥u(mz)∥22

)+ 6nGD

=

n∑
j=1

Z∑
z=1

(
⟨ḡ(z), x̂j(z)− u(mz)⟩+ αL

(
∥x̂j(z)∥22 − ∥u(mz)∥22

))
+ 6nGD

≤
n∑

j=1

Z∑
z=1

(
⟨gj(z), x̂j(z)− u(mz)⟩+ αL

(
∥x̂j(z)∥22 − ∥u(mz)∥22

))
+ 6nGD

+
n∑

j=1

Z∑
z=1

∥ḡ(z)− gj(z)∥2 ∥x̂j(z)− u(mz)∥2

≤
n∑

j=1

Z∑
z=1

(
⟨gj(z), x̂j(z)− u(mz)⟩+ αL

(
∥x̂j(z)∥22 − ∥u(mz)∥22

))
+ 8nGD + 2nαD2

where the second inequality is due to the definition of x̄(z) and Jensen’s inequality, and the last
inequality is due to Assumption 2 and Lemma 1.

Combining the above inequality with ℓz,j(x) = ⟨gj(z),x⟩+ αL∥x∥22, we have

Z∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(xi(z))− ft,j(u(mz))) ≤
n∑

j=1

Z∑
z=1

(ℓz,j(x̂j(z))− ℓz,j(u(mz)))

+ 8nGD + 2nαD2.

(19)

Next, for the second term in the right side of (18), due to Assumption 1, we have

Z∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(u(mz))− ft,j(u(t))) ≤
Z∑

z=1

∑
t∈Tz

n∑
j=1

G ∥u(mz)− u(t)∥2

=

Z∑
z=1

∑
t∈Tz

nG ∥u(mz)− u(t)∥2 .

(20)
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Due to Assumption 2, it is easy to verify that

Z∑
z=1

∑
t∈Tz

nG ∥u(mz)− u(t)∥2 ≤ nDGT. (21)

Moreover, because of mz = 2(z − 1)L+ 1, we also have

Z∑
z=1

∑
t∈Tz

nG ∥u(mz)− u(t)∥2 ≤nG
Z∑

z=1

∑
t∈Tz

t−1∑
i=2(z−1)L+1

∥u(i)− u(i+ 1)∥2

≤2nLG
Z∑

z=1

2zL−1∑
i=2(z−1)L+1

∥u(i)− u(i+ 1)∥2

≤2nLG
T∑
t=2

∥u(t)− u(t− 1)∥2 .

(22)

Combining (20) with (21) and (22), we have

Z∑
z=1

∑
t∈Tz

n∑
j=1

(ft,j(u(mz))− ft,j(u(t))) ≤ min{nDGT, 2nLGPT }. (23)

By substituting (19) and (23) into (18), we complete this proof.

Appendix D. Proof of Theorem 3

Let M denote the total number of instances created by Algorithm 2. It is easy to verify that the
total Z rounds are divided into M subsets, each handled by an instance of B. For any i ∈ [M ], we
assume that the subset handled by Bi has Zi rounds, and denote it as Si =

{
si1, . . . , s

i
Zi

}
. Moreover,

let I = [s, q], and τi = |Si ∩ I| for any i ∈ [M ]. Then, we have

q∑
z=s

(ℓz(x(z))− ℓz(x)) =
M∑
i=1

∑
z∈Si∩I

1

γ1

(
ℓ̂z(x(z))− ℓ̂z(x)

)

≤
M∑
i=1

C1

γ1
τβ1
i

(
1 + C2(log2(Zi + 1))β2

)
≤C1

γ1

(
1 + C2(log2(Z + 1))β2

) M∑
i=1

τβ1
i

≤C1

γ1

(
1 + C2(log2(Z + 1))β2

)
M1−β1

(
M∑
i=1

τi

)β1

(24)

where the first inequality is due to the power of B assumed in (8), and the last inequality is due to
Hölder’s inequality.

Next, we only need to provide an upper bound for M . Let vz denote the number of instances
maintained in the beginning of round z. According to Algorithm 2, we only create an instance of
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B when there does not exist any free instance. In other words, we have vz+1 = vz + 1 only if
z −

∑z
i=1 |Fi| = vz , and vz+1 = vz otherwise, which implies that

M = max
z∈[Z]

{
z −

z∑
i=1

|Fi|

}
+ 1 ≤ cmax (25)

where the last inequality is due to the fact that all gradients queried before round z− cmax +1 must
be received before the end of round z.

Finally, combining (24) with (25) and
∑M

i=1 τi = |I| = τ , we have
q∑

z=s

(ℓz(x(z))− ℓz(x)) ≤
C1

γ1
τβ1c1−β1

max

(
1 + C2(log2(Z + 1))β2

)
.

Appendix E. Proof of Theorem 4

We adopt the same definition of M , Zi, and Si as in the proof of Theorem 3. Then, we have
Z∑

z=1

(ℓz(x(z))− ℓz(u(z))) =
M∑
i=1

∑
z∈Si

1

γ1

(
ℓ̂z(x(z))− ℓ̂z(u(z))

)

≤
M∑
i=1

C1

γ1
Zβ
i

(
1 + C2

Zi∑
k=2

∥∥u(sik)− u(sik−1)
∥∥
2

)1−β

≤C1

γ1

(
M∑
i=1

Zi

)β (
M + C2

M∑
i=1

Zi∑
k=2

∥∥u(sik)− u(sik−1)
∥∥
2

)1−β

=
C1

γ1
Zβ

(
M + C2

M∑
i=1

Zi∑
k=2

∥∥u(sik)− u(sik−1)
∥∥
2

)1−β

.

(26)

where the first inequality is due to the power of B assumed in (9), and the last inequality is due to
Hölder’s inequality.

Moreover, it is not hard to verify that

M∑
i=1

Zi∑
k=2

∥∥u(sik)− u(sik−1)
∥∥
2
≤

M∑
i=1

Zi∑
k=2

sik∑
j=sik−1+1

∥u(j)− u(j − 1)∥2

=

M∑
i=1

siZi∑
j=si1+1

∥u(j)− u(j − 1)∥2

≤M

Z∑
z=2

∥u(z)− u(z − 1)∥2.

(27)

Note that (25) in the proof of Theorem 3 also holds here. Then, combining (26) with (25) and (27),
we have

Z∑
z=1

(ℓz(x(z))− ℓz(u(z))) ≤
C1

γ1
Zβc1−β

max

(
1 + C2

Z∑
z=2

∥u(z)− u(z − 1)∥2

)1−β

. (28)
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Appendix F. Proof of Theorem 5

According to Theorem 1, we only need to bound
∑oq−1

z=os+1 (ℓz,i(x̂i(z))− ℓz,i(x)) for any i ∈ [n],
where oq = ⌈q/(2L)⌉ and os = ⌈s/(2L)⌉. Moreover, we notice that x̂i(1), . . . , x̂i(Z) are generated
by running an instance of Algorithm 2 over ℓ1,i(x), . . . , ℓZ,i(x), where Z = T/(2L). Therefore,
such a bound can be established by utilizing Theorem 3 about the adaptive regret of Algorithm 2.
To this end, we define ℓ̂z,i(x) = γ1ℓz,i(x) + γ2 with γ1 = 1/(8LGD) and γ2 = 1/2, and notice
that ℓz,i(x) = ⟨gi(z),x⟩ for α = 0. Let ḡ(z) = 1

n

∑n
i=1

∑
t∈Tz(∇ft,i(xi(z)) − αxi(z)), where

Tz = {2(z − 1)L + 1, . . . , 2zL}. For any i ∈ [n], combining Lemma 1 and (17) used in the proof
of Lemma 1, we have

max
z∈[Z]

∥gi(z)∥2 ≤max
z∈[Z]

{∥gi(z)− ḡ(z)∥2 + ∥ḡ(z)∥2}

≤max
z∈[Z]

{
4L(G+ αD)

T
+ 2L(G+ αD)

}
≤ 4L(G+ αD)

(29)

where the last inequality is due to T ≥ 2L ≥ 2. Due to (29) and α = 0, we have∥∥∥∇ℓ̂z,i(x)
∥∥∥
2
=

∥∥∥∥ gi(z)

8LGD

∥∥∥∥
2

≤ 1

2D
(30)

for any x ∈ K. Similarly, it is easy to verify that

0 ≤ −∥gi(z)∥2∥x∥2
8LGD

+
1

2
≤ ℓ̂z,i(x) ≤

∥gi(z)∥2∥x∥2
8LGD

+
1

2
≤ 1 (31)

where the first and last inequalities are due to (29) with α = 0 and Assumption 2.
Note that the base algorithm B in Algorithm 2 has been set to be the combination of CBCE and

OGD for convex functions. Combining Theorem 2 of Jun et al. (2017) and Theorem 3.1 of Hazan
(2016) with (30) and (31), if Algorithm 2 is run without delays, B can ensure

q∑
z=s

(
ℓ̂z,i(x̂i(z))− ℓ̂z,i(x)

)
≤ 3

√
τ√

2− 1
+ 8
√
τ(7 ln(Z) + 5) ≤ 32

√
τ

(
1 +

√
7 log2(Z + 1)

4

)
for any interval [s, q] ⊆ [Z] and x ∈ K, where τ = q − s+ 1. By further applying Theorem 3 with
the above inequality, cmax = 3, and γ1 = 1/(8LGD), Algorithm 2 can enjoy

q∑
z=s

(ℓz,i(x̂i(z))− ℓz,i(x)) ≤256LGD
√
3τ

(
1 +

√
7 log2(Z + 1)

4

)
(32)

for any interval [s, q] ⊆ [Z] and x ∈ K.
Then, combining (32) and Z = T/(2L), if oq − os − 1 ≥ 1, for any i ∈ [n], we have

oq−1∑
z=os+1

(ℓz,i(x̂i(z))− ℓz,i(x)) ≤256LGD
√
3(oq − os − 1)

(
1 +

√
7 log2(Z + 1)

4

)
≤32GD

√
6L(q − s)

(
4 +

√
7 log2(T + 1)

)
.

(33)

Finally, combining Theorem 1 with α = 0 and (33), we have
q∑

t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x)) ≤ 32nGD
√
6L(q − s)

(
4 +

√
7 log2(T + 1)

)
+ 4nGD(2 + L)

for any [s, q] ⊆ [T ], x ∈ K, and i ∈ [n].
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Appendix G. Proof of Theorem 6

This proof is similar to the proof of Theorem 5, and we only need to make some modifications to
exploit the strong convexity of functions. Specifically, we first notice that ℓ̂z,i(x) = γ1ℓz,i(x)+γ2 =
ℓz,i(x) = ⟨gi(z),x⟩ + αL∥x∥22 due to γ1 = 1, γ2 = 0, and α > 0, and the base algorithm B in
Algorithm 2 is now set to be the combination of EFLH and OGD for strongly convex functions.
From Theorem 2 of Zhang et al. (2018b), if Algorithm 2 is run without delays, B can ensure

q∑
z=s

(
ℓ̂z,i(x̂i(z))− ℓ̂z,i(x)

)
≤(G′)2

4αL
(log2(Z) + 2 + (3 log2(Z) + 10) lnZ)

≤(G′)2

2αL

(
1 + 7(log2(Z + 1))2

)
for any interval [s, q] ⊆ [Z] and x ∈ K, where G′ = maxz∈[Z],x∈K ∥gi(z) + 2αLx∥2.

Then, by applying Theorem 3 with the above inequality, cmax = 3, and γ1 = 1, Algorithm 2
can enjoy

q∑
z=s

(ℓz,i(x̂i(z))− ℓz,i(x)) ≤
3(G′)2

2αL

(
1 + 7(log2(Z + 1))2

)
. (34)

for any interval [s, q] ⊆ [Z] and x ∈ K. Moreover, due to (29) in the proof of Theorem 5 and
Assumption 2, it is easy to verify that

G′ ≤ 4L(G+ αD) + 2αL∥x∥2 ≤ 4LG+ 6αLD. (35)

Combining (34) with (35), and Z = T/(2L), for any i ∈ [n], if oq − os − 1 ≥ 1, we have

oq−1∑
z=os+1

(ℓz,i(x̂i(z))− ℓz,i(x)) ≤
3(4G+ 6αD)2L

2α

(
1 + 7(log2(T + 1))2

)
.

Finally, combining Theorem 1 with the above inequality, we have
q∑

t=s

n∑
j=1

(ft,j(xi(ot))− ft,j(x))

≤3(4G+ 6αD)2nL

2α

(
1 + 7(log2(T + 1))2

)
+ 4nGD(2 + L) + 2nαD2

for any [s, q] ⊆ [T ], x ∈ K, and i ∈ [n].

Appendix H. Proof of Theorem 7

From Theorem 2, we only need to bound
∑Z

z=1 (ℓz,i(x̂i(z))− ℓz,i(u(mz))) for any i ∈ [n]. Since
x̂i(1), . . . , x̂i(Z) are generated by running an instance of Algorithm 2 over ℓ1,i(x), . . . , ℓZ,i(x),
such a bound can be established by utilizing Theorem 4 about the dynamic regret of Algorithm 2.
To this end, we first define ℓ̂z,i(x) = γ1ℓz,i(x) + γ2 and notice that ℓ̂z,i(x) = ℓz,i(x) = ⟨gi(z),x⟩
due to γ1 = 1, γ2 = 0, and α = 0. From (35) in the proof of Theorem 6, it is easy to verify that∥∥∥ℓ̂z,i(x)∥∥∥

2
= ∥gi(z)∥2 ≤ 4LG. (36)
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Moreover, we have set the base algorithm B in Algorithm 2 to be Ader.
Then, combining Theorem 4 of Zhang et al. (2018a) with PZ =

∑Z
z=2 ∥u(z)−u(z − 1)∥2 and

(36), if Algorithm 2 is run without delays, B can ensure

Z∑
z=1

(
ℓ̂z(x̂i(z))− ℓ̂z(u(z))

)
≤3LG

√
2Z(7D2 + 4DPZ) + 2LGD

√
2Z (1 + 2 ln(k + 1))

≤3LG
√
2Z(7D2 + 4DPZ) + 2LGD

√
2Z

(
3 + 2

√
1 +

4PZ

7D

)

≤3LGD

√
14Z

(
1 +

4PZ

7D

)
+ 10LGD

√
2Z

(
1 +

4PZ

7D

)

=
(
3LGD

√
14 + 10LGD

√
2
)√

Z

(
1 +

4PZ

7D

)
for any u(1), . . . ,u(Z) ∈ K, where k = 1 + ⌊log2

√
1 + 4PZ/(7D)⌋.

By further applying Theorem 4 with the above inequality, cmax = 3, and γ1 = 1, Algorithm 2
can enjoy

Z∑
z=1

(ℓz(x̂i(z))− ℓz(u(z))) ≤
(
3LGD

√
14 + 10LGD

√
2
)√

Z

(
3 +

12PZ

7D

)
(37)

for any u(1), . . . ,u(Z) ∈ K. Combining (37) with (7) and Z = T/(2L), for any i ∈ [n], we have

Z∑
z=1

(ℓz,i(x̂i(z))− ℓz,i(u(mz))) ≤
(
3GD

√
7 + 10GD

)√
TL

(
3 +

12PT

7D

)
.

Finally, combining Theorem 2 with α = 0 and the above inequality, we have

Z∑
z=1

2zL∑
t=2(z−1)L+1

n∑
j=1

(ft,j(xi(z))− ft,j(u(t)))

≤n
(
3GD

√
7 + 10GD

)√
TL

(
3 +

12PT

7D

)
+min {nDGT, 2nLGPT }+ 8nGD

≤n
(
3GD

√
7 + 10GD

)√
TL

(
3 +

12PT

7D

)
+ nG

√
2DLTPT + 8nGD

for any u(1), . . . ,u(T ) ∈ K and i ∈ [n].

Appendix I. Proof of Theorem 8

Inspired by the existing analysis of the lower dynamic regret bound for OCO (Zhang et al., 2018a),
we first divide the total T rounds into Z ′ = T/L blocks, where each block contains L rounds. In
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this way, we can define the set of rounds in the block z as T ′
z = {(z − 1)L+ 1, . . . , zL}. Moreover,

we define the feasible set of u(1), . . . ,u(T ) as

C(C) =

{
u(1), . . . ,u(T ) ∈ K

∣∣∣∣∣
T∑
t=2

∥u(t)− u(t− 1)∥2 ≤ C

}
and construct a subset as C′(C) = {u(1), . . . ,u(T ) ∈ K|u(i) = u(j),∀z ∈ [Z ′], i, j ∈ T ′

z}. Note
that the connection C′(C) ⊆ C(C) is due to the fact that the comparator sequence in C′(C) only
changes

Z ′ − 1 =
T

L
− 1 ≤ max{C,D}

D
− 1 ≤ C

D
times, and thus its path-length does not exceed C.

Then, due to C′(C) ⊆ C(C), it is easy to verify that

T∑
t=1

n∑
j=1

ft,j(x1(t))− min
u(1),...,u(T )∈C(P )

T∑
t=1

n∑
j=1

ft,j(u(t))

≥
T∑
t=1

n∑
j=1

ft,j(x1(t))− min
u(1),...,u(T )∈C′(P )

T∑
t=1

n∑
j=1

ft,j(u(t))

=
Z′∑
z=1

∑
t∈T ′

z

n∑
j=1

ft,j(x1(t))−min
x∈K

∑
t∈T ′

z

n∑
j=1

ft,j(x)

 .

(38)

Next, we introduce an existing lower bound on the regret of any D-OCO algorithm.

Lemma 3 (Theorem 3 of Wan et al. (2024a)) Suppose K = [−D/(2
√
d), D/(2

√
d)]d, and n =

2(m + 1) for some positive integer m. For any D-OCO algorithm, there exists a sequence of loss
functions satisfying Assumption 1, a graph G = ([n], E), and a matrix P satisfying Assumption 4
such that

if n ≤ 8T + 8,R(T, 1) ≥ n
√
πDG

√
T

32(1− σ2(P ))1/4
, and otherwise, R(T, 1) ≥ nDGT

8
.

Combining (38) with Lemma 3, there exists a sequence of loss functions satisfying Assumption 1,
a graph G = ([n], E), and a matrix P satisfying Assumption 4 such that

T∑
t=1

n∑
j=1

ft,j(x1(t))− min
u(1),...,u(T )∈C(P )

T∑
t=1

n∑
j=1

ft,j(u(t))

≥
Z′∑
z=1

n
√
πDG

√
L

32(1− σ2(P ))1/4
=

n
√
πDGT

32(1− σ2(P ))1/4
√
L

≥
n
√
πG
√
Dmax{C,D}T

32
√
2(1− σ2(P ))1/4

when n ≤ 8L+8, where the last inequality is due to L = ⌈TD/max{C,D}⌉ ≤ 2TD/max{C,D}.
In the same way, we can prove that if n > 8L + 8, there exists a sequence of loss functions

satisfying Assumption 1, a graph G = ([n], E), and a matrix P satisfying Assumption 4 such that

T∑
t=1

n∑
j=1

ft,j(x1(t))− min
u(1),...,u(T )∈C(P )

T∑
t=1

n∑
j=1

ft,j(u(t)) ≥
Z′∑
z=1

nDGL

8
=

nDGT

8
. (39)
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