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Abstract—As we all know, it is an era of information explosion,
in which we always get huge amounts of information. Therefore,
it is in urgent need of picking out the useful and interesting
information quickly. In order to solve this serious problem,
recommendation system arises at the historic moment. Among
the existing recommendation algorithms, the item-based collabo-
rative filtering recommendation algorithm is the most widely used
one. Its principle is based on the user’s evaluation of items. The
purpose is to find the similarity between users, and recommend
items to the target user according to the records of the similar
users. However, the number of customers and products keeps
increasing at a high rate, which increases the cost to find out
the recommendation list for each user. The efficiency of a single
common computer will not satisfy the requirement and the super
computer will cost too much. In order to solve the problem, we
propose to use MapReduce to implement the recommendation
system. Besides, we distribute the job to some computer clusters
and the input file of the current computer cluster only relies on
the previous one or the origin input. So the pipeline technology
will be adopted to improve the efficiency further. The experiment
shows that the method can merge the ability of some common
PC to process large-scale data in a short time.

Index Terms—item-based collaborative filtering; recommenda-
tion; MapReduce; pipeline

I. INTRODUCTION

In the era of information explosion, recommendation sys-

tem [1] is one of most useful tools to help users get the

interesting information in a short time. Recommendation

system is based on the historical records of user access,

purchasing records and relation between items to construct

interest model, and with the user interest model of multifarious

information, finally the system will recommend users the items

they might be interested in. The collaborative filtering [2]–[6]

is one of the most popular techniques used in recommendation

system. One of the earliest item-based collaborative filtering

recommendation systems was developed in [7], which used

the similarities of items to make recommendations to users.

Due to the continuous development of the global informa-

tion industry, it becomes more and more difficult for network

resource and data analysis technology to adapt to the demand

in present era of the intensive data processing. In recent years,

the cloud computing emerges. It is a kind of resource on-

demand renting service mode, where users can access the

data in the computer and storage system according to the

requirement. The network of the computer resources, virtual

as a resource pool, and the specific software are used to

realize automatic and intelligent computing. So it allows a

variety of computing resources to work together. Based on this

technology, Google Labs put forward MapReduce model in the

cloud computing, which is specialized in parallel computation

of large data sets. In our project, we realize a pipeline item-

based collaborative filtering by using MapReduce. The map

operations on the input data can calculate an intermediate

key/value pairs. Properly combining the data, we apply reduce

operation in all the value which have the same key. The

use of function model, combined with the user to specify

the map and reduce operations, so we can easily realize the

large-scale parallel computing. At the same time we use the

restart mechanism which can easily realize fault tolerance.

Like MapReduce, this parallel computing model of analyzing

large data sets has formed a “cluster” revolution in the industry.

The current software implementation is to specify a map

function, using a set of keys for mapping into a new set of

key/value pairs, specifying the concurrent reduce function, to

ensure that all the keys of the map for each of the group share

the same key.

There are some researches about recommendation algorithm

running in a distributed cloud computing, but them still exist

some issues to be addressed. In [8], a MapReduce framework

was proposed to calculate the similarities of any two points,

but failed to implement the entire recommendation system on

MapReduce platform. In [9], a framework was constructed

to implement the recommendation system on MapReduce.

However, it is limited to only one cluster. When applied

in more than one clusters, it will fail to make full use of

computing resources since some of the clusters are wasted.

In the paper, we propose a pipeline [10] item-based col-

laborative filtering recommendation algorithm built on four

Hadoop clusters. For each cluster, it receives the input from the

previous cluster and provides the input for the next cluster so

that we can run the recommendation algorithm in the pipeline

model. One cluster can begin a new job after finishing the task

of the whole recommendation system and it’s unnecessary for

the cluster to wait for the accomplishment of the whole job

which can improve the utilization of those computing clusters.

The algorithm we proposed is more efficient and can take
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Fig. 1. User-item rating matrix

advantage of multiple clusters to complete recommendation

system with the growth of data scale. It make a contribution

to fill the lack of recommendation algorithm running in a

distributed cloud computing.

Our experiment shows that the method we proposed can

merge the ability of some common PC to process large-scale

data in a short time.

II. PRELIMINARIES

In this section, we will briefly introduce the problem defi-

nition and some notations used in this paper.

First of all, we need to construct a user-item rating matrix

from the original data, as shown in Fig. 1.

Let U = {u1, u2, . . . , um} be the collection of users.

The number of users is m. Let I = {i1, i2, . . . , in} be the

collection of items. The number of items is n. Let R be the

user-item rating matrix. And Rij is the rating user i gives to

item j. If the user i don’t rate item j, the value of Rij is set

to zero.

When calculating the similarity of items, we just consider

adjusted cosine similarity. So the similarity between items i
and j is given by

Sij =

∑
u∈U (Rui − R̄u)(Ruj − R̄u)√∑

u∈U (Rui − R̄u)2
√∑

u∈U (Ruj − R̄u)2
(1)

where R̄u is the average of the ratings of user u.

We think that the prediction of rating given by user u to item

i is equal to the sum of the weighted ratings given by the user

on the items similar to i. The weight is the corresponding

similarity between i and other item.

Therefore, let Sij be the similarity between i and j, the

predicted rating user u give to item i, denoted as pui, can be

calculated as follows:

pui =

∑k
j=0 Sij ∗Ruj∑k

j=0 |Sij |
(2)

Intuitively, the higher the predicted rating of the item is,

the more possible the target user is willing to buy. For the

target user, we sort all the predicted ratings and recommend

the items with high predicted ratings for the user.

III. ITEM-BASED COLLABORATIVE FILTERING

RECOMMENDATION ALGORITHM BASED ON MAPREDUCE

In order to execute the Item-based Collaborative Filtering

Recommendation algorithm on MapReduce, we should divide

the algorithm into four steps and the outputs of the previous

MapReduce operation are the inputs of the succeeding MapRe-

duce operation. The major goal of the first two steps is to get

all the items’ similarity, and after that the rest steps can predict

the scores of the items which the target user have not bought

yet. In this section, we will describe the four steps in detail

and show the pseudocode of each step.

A. Step one

In this step, we just prepare the data for the second step to

calculate the similarity of each pair of items.

1) Mapper I: The goal of the first map operation in the first

map machine is to sent all the < Item,Rating > pairs from

the same user to the same reduce machine so that we can get

the user’s average rating score in the reduce machine. Each

input value is a rating record MIA = UserID :: ItemID ::
Rating.

INPUT :

< UserID :: ItemID :: Rating >

OUTPUT :

< UserID, (ItemID : Rating) >

Algorithm 1 Mapper I

1: Input: MIA.

2: [UserID, ItemID, Rating] = Split MIA by ’::’

3: key = UserID
4: value =ItemID : Rating
5: Output: (key ,value)

2) Reducer I: Since all the records of a user have been

shuffled to the same reduce machine, the average rating score

Rating of the user should be calculated firstly. After that,

we can get the score difference DR of all the items’ rating

to the average rating score which make it possible for us to

use the Adjusted Cosine Similarity method to get all the item

similarities later. In fact, it is unnecessary for us to get all

items permutations but to make the ID of the previous item

large than the later one in the item pair because the items

similarities matrix we just need to construct is symmetric.

INPUT :

< UserID, list(ItemID : Rating) >

OUTPUT :

< (ItemIDi : ItemIDj), (DRi : DRj) >

B. Step two

All the item similarities will be calculated in this phase and

only
n∗(n−1)

2 item similarities will be listed in the end since

the items similarities matrix is symmetric.
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Algorithm 2 Reducer I

1: Input: key,value[].
2: UserID = key
3: len = length(value[])
4: ItemID[len]
5: Rating[len]
6: let L be an empty list

7: for i = 1 to len do
8: [ItemIDi,Ratingi] = Split valuei by ’::’

9: end for
10: ave = The mean of Rating[]

11: for i = 1 to len do
12: for j = i+ 1 to len do
13: DRi = Ratingi - ave
14: DRj = Ratingj - ave
15: t = Itemi : Itemj , DRi:DRj

16: L.push(t)

17: end for
18: end for
19: Output: L

1) Mapper II: The map machine will do nothing in this

phase because the output of the first reduce machine can be

the input of the reduce machine in the second step directly.

B = (ItemIDi : ItemIDj), (DRi : DRj) is the input of the

map machine.

INPUT :

< (ItemIDi : ItemIDj), (DRi : DRj) >

OUTPUT :

< (ItemIDi : ItemIDj), (DRi : DRj) >

Algorithm 3 Mapper II

1: Input: MIB.

2: [key, value] = Split MIB by ’,’

3: Output: (key ,value)

2) Reducer II: For two items i and j where (i < j), all

the co-rating pairs from the same user will be shuffled to the

same reduce machine. In other words, all the corresponding

value pairs (DRi, DRj) coming from the users who have rated

the item i as well as item j will be sent to the same reduce

machine. Notice that the corresponding value of the item i or

j in the machine is the difference between the item’s rating

and the average rating of the user to all the items. In this way,

we can use the Adjusted Cosine Similarity method to get the

similarity between the item i and the item j.

INPUT :

< (ItemIDi : ItemIDj), list(DRi : DRj) >

OUTPUT :

< (ItemIDi : ItemIDj), Sij >

Algorithm 4 Reducer II

1: Input: key,value[].
2: len = length(value[])
3: for i = 1 to len do
4: [DRAi,DRBi] = Split value[t] by ’:’

5: end for
6: S = DRA∗DRB

|DRA|∗|DRB|
7: ItemIDs = key
8: Output: (ItemIDs,S)

C. Step three

There are two sources for the input in this step. One is

the input of the first step and the other one is the output of

the second step. Different operations will be carried out to

the different input streams in the map machine. In order to

put the item similarities and user rating records in the same

reduce machine, all the results will take the same key in the

key/value pair after the map operation.

1) Mapper III: This is the most important phase in the

entire algorithm. There are two kinds of output from two

different sources respectively. In order to distinguish the

two different types of output obtained from corresponding

inputs, tag should be attached to each key/value pair. MIC1 =

UserID :: ItemID :: Rating is the input of the first Mapper

as well as the type A input of the third Mapper. MIC2 =

ItemIDs, S.

INPUT :

< UserID :: ItemID :: Rating >
< (ItemIDi : ItemIDj), Sij >

OUTPUT :

< ItemIDi, (A : UserID : Ratingi) >
< ItemIDi, (B : ItemIDj : Sij) >
< ItemIDj , (B : ItemIDi : Sij) >

Algorithm 5 Mapper III (Type A)

1: Input: MIC1.

2: [UserID, ItemID, R] = Split MIC1 by ’::’

3: key = ItemID
4: value =A : UserID : R
5: Output: (key ,value)

2) Reducer III: The reduce machine will combine the result

from different sources in the map machine. So the reduce

machine will also have two kinds of input with the same key

but different tags, namely tag A or tag B. The key ItemIDi

of A and B is a bridge to connect two kinds of input. The

value of type A input tuple is the user who has rated item i
and the corresponding rating while the value of type B input

tuple is the item j that the user in type A value tuple has not

bought yet and the similarity between item i and item j.

INPUT :
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Algorithm 6 Mapper III (Type B)

1: Input: MIC2
2: [ItemIDs,S] = Split MIC2 by ’,’

3: [ItemIDi, ItemIDj] = Split ItemIDs by ’:’

4: key1 = ItemIDi

5: value1 =B:ItemIDj :S
6: key2 = ItemIDj

7: value2 =B:ItemIDi:S
8: out[1] = (key1,value1)

9: out[2] = (key2,value2)

10: Output: (out)

< ItemIDi, list(A : UserID : Ratingi) >
< (ItemIDi : ItemIDj), Sij >

OUTPUT :

< UserID : ItemIDj , Ratingi : Sij >

Algorithm 7 Reducer III

1: Input: RICA, RICB.

2: RICA is the output lists of Mapper A

3: RICB is the output lists of Mapper B

4: lenA = length(RICA)

5: lenB = length(RICB)

6: let L be a list

7: for i = 1 to len(RICA) do
8: for j = 1 to len(RICB) do
9: UserID,R = Split RICAi by ’:’

10: ItemID,S = Split RICBi by ’:’

11: t = UserID:ItemID, R:S

12: L.push(t)

13: end for
14: end for
15: Output: (L)

D. Step four

In step four, we will get the prediction rating of the all items

the target user has not bought yet.

1) Mapper IV: The output of step 3 like this (UserID :
ItemIDj , Ratingi : Sij) and the output value with the same

(UserID : ItemIDj) will appear in many reduce machines.

The task of the map machine in this phase is to collect those

data and sent the key/value pair with the same (UserID :
ItemIDj) as key to the same reduce machine by shuffle sort

so that we can predict the user’s rating to item j. MID =

UserID : ItemIDj , Ratingi : Sij is the input of the fourth

map machine.

INPUT :

< UserID : ItemIDj , Ratingi : Sij >

OUTPUT :

< UserID : ItemIDj , Ratingi : Sij) >

Algorithm 8 Mapper IV

1: Input: MID.

2: [key,value] = Split MID by ’,’

3: Output: (key, value)

2) Reducer IV: For itemj , we can get a gain from each item

i that the user u has rated before by Rui ∗Sij . The sum of all

the gains into the sum of all the corresponding similarities is

the prediction score to the item j.

INPUT:

< UserID : ItemIDj , list(Ratingi : Sij) >

OUTPUT :

< UserID : ItemIDj : PredictScorej >

For the target user, we can calculate the PredictScorej the

predicted rating of item j by

PredictScorej =

∑k
i=1 Ratingi ∗ Sij∑k

i=1 |Sij |
(3)

where k is the number of items that the user has rated and the

k items will be put into the same reduce machine.

Algorithm 9 Reducer IV

1: Input: key,value[].
2: len = length(value[])

3: SumA = 0
4: SumB = 0
5: for i = 1 to len do
6: ItemID,S = Split value[i] by ’:’

7: SumA = SumA+ ItemID ∗ S
8: end for
9: PredictScore = SumA / SumB

10: UserID,ItemID = Split key by ’:’

11: Output: (UserID,ItemID,PredictScore =)

The algorithm we design can be divided into four steps.

There are a certain number of computers for map operator

and reduce operator in each step. Because the time complexity

of the four steps are different, we can balance the execution

time of the four steps by controlling the number of computers

of four MapReduce computing clusters. These four successive

steps are not in a serial manner but like an assembly line

as shown in Fig. 2. The input files will not be sent to Step

Two until Step One finishes processing them. Step One will

continue to deal with new input information as Step Two is

dealing with the previous input files in good order. Working

like an assembly line, this model can increase the efficiency,

accelerate the processing of data as well as reduce the costs.

Notice that, the third Hadoop cluster need two input files, one

is the original input file and the other one is the output of the

second Hadoop cluster. In order to implement pipeline model,

we should make some modification in the first step and the

second step. The first Hadoop cluster should copy the original
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input and sent its original input and the output of the first

step to the second Hadoop cluster. It means that the second

map machine and reduce machine will receive two kinds of

input source just like the third Hadoop. We can use the same

way used in the third map machine and reduce machine(using

two different tags) to distinguish the two kinds of inputs.

The first Reducer should give a tag to each output so that

the second Mapper can distinguish them. When the second

Hadoop receive the two kinds of outputs with different tags

from the first Hadoop cluster it can recognize them and execute

corresponding operation. In the way, the third Hadoop can

receive two different inputs from the output file of the second

Hadoop cluster directly. But if we just have one Hadoop and

don’t want to implement pipeline, those modification in the

first step and the second are not necessary and we just need to

implement the code according to the pseudocode given before.

Getting the original input by sending the original input file

again to the third step directly is better than getting from the

output file of the second step after transfering between the

first and the second step because the transmission time can be

saved.

Map

Reduce

Map

Reduce

Map

Reduce
Reduce

Map

step 1
step 2

step 3step 4

OUTPUT

INPUT

INPUT

Fig. 2. Pipeline MapReduce model

IV. EXPERIMENTS

In this section, we evaluate the efficiency of the item-based

collaborative filtering algorithm on the Hadoop cluster. As

expected, the prediction results obtained by the the item-based

collaborative filtering algorithm on the Hadoop cluster are

the same as the algorithm executing on the single computer.

The efficiency of the algorithm on Hadoop cluster will be

improved as the number of the computers of the Hadoop

cluster increasing.

A. Experimental environment

We evaluate the efficiency of the algorithm on a Hadoop

cluster which consists of 6 nodes. One node is mater node

which is used to manage the whole Hadoop cluster and the

other five nodes are data notes that is in charge of processing

data distributed by the mater node. All the nodes are common

personal computers with Intel i3-3240 CPU, 8G RAM, 150G

TABLE I
MOVIELEN DATASETS

MovieLen
#Users 1040 3870 6710 9730 12802

#Movies 6728 8925 9574 9914 10068
#Ratings 126804 505818 888775 1317295 1729636

disk, running Ubuntu Linux 14.04. All the machines are

connected by switch.

B. Experimental dataset

In this experiment, we use the MovieLens dataset [11]

which collects users’ rating records from the website. The

dataset contains 71567 users, 65133 movies and 10000054

ratings on the range from 1 to 5. In order to evaluate the speed

improvement obtained by our method, we extract five different

datasets with different sizes from the original large dataset.

The five datasets are shown in the Table I. For convenience,

we name the five datasets according to their sizes, i.e., “1040

users dataset”, “3870 users dataset”, etc.

C. Experimental evaluation

We use the evaluation measurement which is proposed in

[12] to evaluate the efficiency of the item-based collaborative

filtering algorithm on the Hadoop cluster. The number of node

represent the number of the computers in the Hadoop cluster.

f =
T1

Tp
(4)

where T1 is the execution time with one node in the Hadoop

cluster and Tp is the execution time with p nodes on the

Hadoop cluster. So we can know the influence of the number

of the nodes to the execution efficiency via the value of f .

Ideally, the execution time of the algorithm will decrease

linearly as the number of nodes on the Hadoop cluster

increases. The data transmission between the nodes on the

Hadoop cluster will cost some times. We support the trans-

mission time is α and the execution time with p nodes is not

equal to T1

p but T1

p + α. The larger the data size is (which

implies that the longer execution time with one node will be),

the larger the α value will be. Therefore α ∝ T1. Now, we

can rewrite Eq. 4 as,

f =
T1 ∗ p

T1 + α ∗ p (5)

The experimental results on the Hadoop cluster with differ-

ent nodes and different scale of datasets are shown in Fig. 3.

As the number of nodes increases in the Hadoop cluster, the

execution time of the algorithm will be reduced. If we ignore

the transmission time between each node, the execute speed

is p times the original speed where the p is the number of

nodes in the Hadoop cluster. Notice that the improvement on

the larger dataset will be more obvious because the smaller

dataset will have a higher percentage of the data transmission

time from the total but the main cost of the bigger dataset is to

process the data in each node. The execution time of the four
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steps on the dataset with 12802 users are displayed in Fig. 4.

The four steps of a job will run in the cluster with the same

number of nodes. As we can see in the figure, the second step

will cost more than the other three steps but all the four steps

can be accelerated as the number of nodes on the Hadoop

cluster increasing. In order to run the whole algorithm with

pipeline, we should balance the execution time of the four

steps by controlling the number of nodes in each Hadoop

cluster. We should put more nodes in the second Hadoop

cluster since it will spend more time finishing its task. For

the whole algorithm, if the running time of the four steps

are almost the same, we can run the algorithm in the pipeline

model. It is expected that a step finishes its task, the succeeding

step can finish its task at the same time and get the next input

file from the previous step immediately. In this way, we can

make all the nodes on all the Hadoop clusters busy to speed

up execution.
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Fig. 3. The efficiency of Hadoop cluster
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V. CONCLUSIONS

Recommendation system is a very popular topic and it has

brought great convenience to our daily life. With the develop-

ment of science and technology, recommendation system was

applied in more and more situations. But with the growth of

data, recommendation system needs more time and power to

meet the requirements. There should be a new scheme to solve

the problem.
In this paper, we execute the traditional item-based col-

laborative filtering recommendation algorithm on MapReduce

by splitting the whole big dataset into some smaller datasets.

In this way, we can build a powerful computing cluster by

collecting the computing ability of many common PCs to

process a large scale dataset efficiently. If we have four

Hadoop clusters, we can run the whole algorithm in pipeline

which can make good use of all the computing resources by

making all the computers busy.
Our results show that the proposed method shortens the

execution time of recommendation system. But there are still

many work we should do in the future. In this paper, we

just propose a method to execute the traditional item-based

collaborative filtering on Hadoop. As the development of the

recommendation system, the quality of the recommendation

algorithm will be improved but the algorithm may be more

complex.
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