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Abstract

We consider a general and realistic scenario involving non-
stationary time series, consisting of several offline intervals
with different distributions within a fixed offline time hori-
zon, and an online interval that continuously receives new
samples. For non-stationary time series, the data distribution
in the current online interval may have appeared in previous
offline intervals. We theoretically explore the feasibility of
applying knowledge from offline intervals to the current on-
line interval. To this end, we propose the Mixture of Online
and Offline Experts (MOOE). MOOE learns static offline ex-
perts from offline intervals and maintains a dynamic online
expert for the current online interval. It then adaptively com-
bines the offline and online experts using a meta expert to
make predictions for the samples received in the online in-
terval. Specifically, we focus on theoretical analysis, deriving
parameter convergence, regret bounds, and generalization er-
ror bounds to prove the effectiveness of the algorithm.

Introduction
For a non-stationary time series, the data distribution in the
current time window may have appeared in the past. There-
fore, can we apply the knowledge from historical data to the
current time window? In this paper, we theoretically prove
that this is feasible.

A common assumption in statistical learning theories for
time series is that observed samples are i.i.d., or stationary
in stochastic processes (Hamilton 1994). To leverage sam-
ple dependence in non-i.i.d. processes, it is often assumed
that observations come from a stationary φ-mixing or β-
mixing sequence (Mohri and Rostamizadeh 2010). Howev-
er, these assumptions may not hold as the distribution of
real-life time series usually changes over time, making the
hypothesis class not (agnostically) PAC learnable (Hanneke
2016). Fortunately, distribution changes in real life are often
gradual, and samples in a short interval are nearly identical-
ly distributed (Kuznetsov and Mohri 2015). Therefore, we
consider a realistic scenario involving non-stationary time
series with several offline intervals of different distributions
within a fixed offline time horizon and an online interval that
continuously receives new samples. Once the number of re-
ceived labeled samples reaches a predefined size, the online
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interval is converted to the last offline interval, and a new
online interval begins.

Some existing methods (Shalev-Shwartz 2012; Zhang,
Lu, and Zhou 2018) train an expert on the entire time series
using off-the-shelf online optimization techniques, without
considering the non-stationary nature of the data. However,
the dynamic data with varying distributions can mislead the
expert. Other methods (Yu 1994; Mohri and Rostamizadeh
2008, 2010) train an expert from scratch for each new on-
line interval, which is safer but unreliable due to the scarcity
of labeled samples at the early stage. Thus, it is fundamen-
tal yet highly challenging to design a learning method with
tight sample complexity that outputs a hypothesis with desir-
able generalization. For non-stationary time series, the data
distribution in the current online interval may have appeared
in historical offline intervals. Therefore, a natural solution
is to combine the offline experts from the offline intervals
with the online expert from the current interval to address
the shortcomings of the aforementioned methods.

Inspired by the mixture of experts (Puigcerver et al.
2024), we propose Mixture of Online and Offline Experts
(MOOE) to transfer knowledge from offline intervals to the
online interval, addressing the non-stationarity issue. Fol-
lowing the paradigm of prediction with expert advice (Cesa-
Bianchi and Lugosi 2006; van Erven and Koolen 2016),
MOOE employs a meta expert to combine the online and
offline experts by adaptively weighting them according to
their effectiveness. Specifically, the online expert is continu-
ously updated in the current online interval using an existing
online optimization method. Additionally, when an online
interval collects enough samples to become an offline in-
terval, all samples from this interval, along with previously
obtained offline experts, are used to train the offline expert
for this interval.

Theoretically, we prove that the regret of MOOE is deter-
mined by the regret of the off-the-shelf online optimization
method used for the online expert. However, this can be im-
proved if the number of maintained experts is within a bound
controlled by the size of intervals and the empirical errors of
the offline experts. By connecting optimization with learn-
ing theory (Hazan 2016), we derive the generalization error
bound by jointly exploiting the regret, the properties of the
loss function, the hypothesis class, and the data distribution,
thereby verifying the effectiveness of our approach. Exper-
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imentally, MOOE outperforms state-of-the-art methods for
handling non-stationary time series.

Related Work

Learning Theory for Non-Stationary Time Series

For non-i.i.d. processes, under the stationary and β-mixing
assumptions, the early work (Yu 1994) establishes the con-
vergence rate over VC-dimension, and the work in (Mohri
and Rostamizadeh 2008) presents data-dependent bounds
in terms of the Rademacher complexity. By exploiting the
stability properties of a specific learning algorithm, gener-
alization bounds for φ-mixing and β-mixing sequences are
provided in (Mohri and Rostamizadeh 2010). However, the
mixing assumption is hard to be verified in practice. There
are some attempts to relax the stationary and mixing as-
sumptions. The uniform convergence under ergodicity sam-
pling is shown in the work of (Adams and Nobel 2010). For
an asymptotically stationary (mixing) process, although a
generalization error is derived in (Agarwal and Duchi 2013)
through the regret of an online algorithm, and their analysis
depends on the assumption that the output from an online
learning algorithm tends to be stable, which is invalid in a
dynamic environment. In (Kuznetsov and Mohri 2014), the
guarantee of the learning rate for nonstationary mixing pro-
cesses is given by a sub-sample selection technique with the
Rademacher complexity. Further, in (Kuznetsov and Mohri
2015), a more general scenario of nonstationary and non-
mixing processes is considered, which proves the learning
guarantees with the conditions of the discrepancies between
distributions.

Regret Analysis in Dynamic Environments

The regret theory (Buchbinder et al. 2016) for measuring
the performance has been extensively studied. The dynamic
regret (Anagnostides, Farina, and Sandholm 2023) and it-
s restricted form (Besbes, Gur, and Zeevi 2015) have been
introduced to manage changing environments. A basic idea
behind such regrets is to compare the cumulative loss of the
learned expert with several experts rather than the best one.
Along this line of study, adaptive learning for dynamic re-
gret (Ader) (Zhang, Lu, and Zhou 2018) considers multiple
experts with various learning rates updated by online gra-
dient descent (OGD) (Zinkevich 2003), and the established
upper bound matches the lower bound. Another independen-
t work for dynamic regret in a nonstationary environment is
about multi-armed bandit (MAB) (Besbes, Gur, and Zeevi
2015), where the work in (Wei, Hong, and Lu 2019) reveal-
s how the statistical variance of the loss distributions affect
the dynamic regret bound. However, these dynamic regrets
depend on the distribution changing times, which are usual-
ly unknown. When the sequence of samples is very long, the
data distribution may have changed many times. As a result,
the loose bound cannot measure the learned expert perfor-
mance in the current interval. Another limitation is that the
bound is inappropriate for analyzing experts learned on the
fly because these regrets only act on observed samples.

Problem Statement
In non-stationary time series, an online platform containing
experts will receive an input x at each time step and predic-
t its label y, indicating the class the input belongs to. For
inputs with feedback, i.e., when the ground truth labels are
revealed after predicting, the online platform will update by
learning from the feedback. For inputs without feedback, the
online platform merely predicts the labels. We aim to contin-
uously update and utilize the experts in this online platfor-
m to more accurately predict class labels for samples from
non-stationary time series in the current online interval.

Specifically, the considered non-stationary time series
containsG−1 offline intervals and one online interval. Each
offline interval contains B samples, and the online interval
contains T samples (T ∈ [B]). We assume the distribution
changes gradually, and the samples in each interval can be
approximately drawn from a distribution. Accordingly, we
set the maximal sample size B as a hyperparameter, even
if the time between distribution changes is not constant and
usually unknown. The online interval will become offline if
T = B, increasing the number of offline intervals. Accord-
ingly, we have the following assumptions.
Assumption 1 Let Dg be the data distribution in the gth

interval. DU =
⋃G
g=1Dg is non-stationary since Dg 6=

Dg′ , ∀g, g′ ∈ [G], g 6= g′.

Assumption 2 The norm of every input sample x with label
y in the Hilbert space i.i.d. drawn from the distribution DG
of the online interval is upper bounded by a constant D:

‖x‖ ≤ D, ∀(x, y) ∼ DG.
The eigendecomposition of the Hilbert-Schmidt operator is

E(x,y)∼DG [xxT ] =
∞∑
i=1

λiuiu
T
i ,

where (ui)
∞
i=1 forms an orthonormal basis of Hilbert S-

pace and (λi)
∞
i=1 corresponds to the eigenvalues in a non-

increasing order.

Assumption 3 For any sample (x, y) ∼ DU , the hypothesis
class is

H , {h : x 7→ 〈w,x〉 |w ∈ W , ‖w‖ ≤ R},
where the domainW bounded by R is a convex subspace of
a Hilbert space.

Assumption 4 For any sample (x, y) ∼ DU , the loss func-
tion family L with the hypothesis class H is bounded in the
interval [0, 1]:

L , {(x, y) 7→ l(h(x), y) |h ∈ H, l(h(x), y) ∈ [0, 1]}.
Assumption 5 For any (x, y) ∼ DU and all w,w′ ∈ W ,
l(〈·,x〉 , y) is convex and β-smooth over the domainW:

‖∇l(〈w,x〉 , y)−∇l(〈w′,x〉 , y)‖ ≤ β ‖w −w′‖ .
In the Gth interval, we would like to learn an expert w ∈

W with a small popular risk with respect to the nonnegative
loss function l

LD(w) = E(x,y)∼D[l(〈w,x〉 , y)], (1)
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Figure 1: The working process of MOOE on non-stationary time series.

by minimizing the corresponding empirical risk using the
proposed method:

LS(w) =
1

T

T∑
t=1

l(〈w,xt〉 , yt) =
1

T

T∑
t=1

ft(w), (2)

where S = {(x1, y1), . . . , (xT , yT )} is the data set con-
sisting of T (T ∈ [B]) samples in the online interval, and
we use LS̃(w) to denote the specific case when T = B.
Let w∗ ∈ arg minw∈W LD(w) be an optimal solution and
ŵ ∈ arg minw∈W LS(w) be an empirical minimizer.

Because the loss function l is nonnegative as well as β-
smooth, according to the self-bounding property (Srebro,
Sridharan, and Tewari 2010) of smooth functions and As-
sumption 4, we obtain the following upper bound on the
norm of the gradients of l(〈·,x〉 , y) for any (x, y) ∼ DU
and all w ∈ W:

‖∇l(〈w,x〉 , y)‖ ≤
√

4β · l(〈w,x〉 , y) ≤ 2
√
β. (3)

Note that this paper aims to address the non-stationary issue
rather than the widely-explored non-convex problem. We
thus assume the loss function is convex for convenience and
focus on providing the theoretical guarantees for the pro-
posed learning mechanism.

Mixture of Online and Offline Experts
Fig. 1 introduces the working process of Mixture of Online
and Offline Experts (MOOE) for the non-stationary time se-
ries. MOOE maintains several offline experts for the corre-
sponding offline intervals and an online expert for the cur-
rent online interval. It then integrates all of these experts us-
ing a meta expert with adaptive weights.

The number of maintained experts is K, which is defined
as,

K =

{
Kmax, if G ≥ Kmax

G, if G < Kmax
. (4)

whereKmax is a hyperparameter denoting the maximal num-
ber of maintained experts. Therefore, MOOE containsK−1
offline experts and one online expert. In the interest of brevi-
ty, an expert and its corresponding advice are denoted as its

parameters w. Accordingly, we assume the kth (k ∈ [K−1])
offline expert is wk

t and the online expert is wK
t . For the tth

sample with feedback in the online interval, MOOE firstly
selects K experts

{w1
t , . . . ,w

K−1
t︸ ︷︷ ︸

Offline Expert

, wK
t︸︷︷︸

Online Expert

}, (5)

and integrates them into a meta expert wt for making a pred-
ition. When T = B, the online interval becomes offline, and
a new online interval appears. We generate the new offline
expert wK for the just-passed complete online interval and
refresh K − 1 offline experts if G ≥ Kmax.

Meta Expert
The meta expert adjusts its strategy of integrating the K ex-
perts (K − 1 offline experts and one online expert) accord-
ing to their losses received on labeled samples. For the on-
line interval, we track the best expert (Herbster and Warmuth
1995) based on the exponentially weighted average forecast-
er (Cesa-Bianchi and Lugosi 2006) by assigning a consider-
able weight to the expert with a small cumulative loss, and
vice verse. Accordingly, at iteration t in the online interval,
the meta expert outputs a weighted average solution

wt =
K−1∑
k=1

αktw
k
t + αKt wK

t =
K∑
k=1

αktw
k
t , (6)

αkt is the weight of the kth expert wk
t . To lead to a compact

regret bound, ensure that
∑K
k=1 α

k
1 = 1, and provide dif-

ferent weights for experts according to their priorities, αkt is
initialized as

αk1 =
K + 1

(K + 1− k)(K + 2− k)K
. (7)

Note that it is unnecessary to project wt into the domainW .
Because each expert satisfies wk

t ∈ W(k ∈ [K]) and the
weighting function Eq. (6) is linear, the weighted average
wt is still in the domainW according to convex properties.
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Algorithm 1: MOOE

1: Input: step size ν
online expert wK

1
offline expert set {w1, . . . ,wK−1}

2: Initialize α1
1 < α2

1 < · · · < αK1 according to:

αk1 =
K + 1

(K + 1− k)(K + 2− k)K
, ∀k ∈ [K]

3: for t = 1,. . . ,T do
4: Receive online expert wK

t
5: Assign offline expert wk

t = wk, ∀k ∈ [K − 1]

6: Output weighted average: wt =
∑K
k=1 α

k
tw

k
t

7: Receive the loss function ft(·)
8: Update expert weights:

αkt =
αkt e

−νft(wkt )∑K
k′=1 α

k′
t e
−νft(wk

′
t )
, ∀k ∈ [K]

9: Send gradient∇ft(wK
t ) to the online expert

10: end for

After obtaining the loss at iteration t, the K weights are
updated according to the exponential weighting scheme

αkt =
αkt e

−νft(wkt )∑K
k′=1 α

k′
t e
−νft(wk

′
t )
, (8)

where ν = 4
√

lnK
T is the step size. MOOE is summarized

in Algorithm 1.

Offline Expert
We extract knowledge from offline intervals by learning an
offline expert for each online interval when all of its sam-
ples are available. Each interval is coupled with its previ-
ous offline experts and online expert when its online expert
has passed this interval once, and its previous offline experts
may be learned from similar distributions. Thus, we transfer
their knowledge adaptively to its offline expert.

For each online interval, we calculate a new offline expert
wK once T = B by taking advantage of the prior knowl-
edge of the K − 1 offline experts w1

B , . . . ,w
K−1
B and the

online expert wK
B . According to the strategy of the meta

expert, the expert performing best in this interval has the
largest weight, therefore the new offline expert wK should
be close to the best expert. Accordingly, we use the regu-

larization term Ω(w) =
∥∥∥w −∑K

k=1 α
k
Bw

k
B

∥∥∥2
2

to constrain

the search space of wK ,

wK = arg min
w∈W

1

B

B∑
t=1

ft(w) +
γ

2
Ω(w)︸ ︷︷ ︸

Lγ
S̃
(w)

, (9)

where γ ≥
∑K
k=1 α

k
BLS̃(wk

B)/4R2 is a hyperparameter to
control the effect of the prior knowledge and T is assigned
as B in S̃ .

After receiving the new offline expert wK , we set prior-
ities for all K offline experts, as their potential abilities for
the next online interval vary. We then select K − 1 offline
experts by eliminating the one with the lowest priority and
initialize their weights in the meta expert according to these
priorities, as shown in Eq. (7). The priority mechanism does
not affect our theoretical results for the MOOE method, so
we do not delve into it here. Instead, we provide two sim-
ple mechanisms: maintaining an expert queue where the first
expert has the lowest priority and the newest expert is en-
queued while the oldest is removed, or setting the newest
offline expert with the highest priority and assigning the pri-
orities for the previousK−1 experts based on their weights.

Online Expert
To train an online expert for a new online interval, we can
reinitialize its parameters randomly or by inheriting its so-
lution from the just-passed complete online interval as a
warm start. Recall that we can train the online expert by
any off-the-shelf online optimization methods on the fly.
In this paper, we use the standard Online Gradient Descent
(OGD) (Zinkevich 2003) method as an instance because it is
the most common and famous online optimization method.
On the online interval, the online expert submits its advice
wK
t to the meta expert and receives the gradient ∇ft(wK

t )
to update its parameters by

wK
t+1 = ΠW [wK

t − ηt∇ft(wK
t )] (10)

ηt = D√
βt

is the step size, and ΠW is the proximal operator
onto spaceW .

Theoretical Guarantees
In this section, we provide theoretical guarantees for
MOOE, which match our expectations. Specifically, we ana-
lyze the properties of the regularization term Ω(w) and pro-
vide the regret and the generalization error of the output hy-
pothesis. To exploit the convexity, smoothness, and nonneg-
ativity conditions of the loss function, the hypothesis class,
the data distribution, and the regret, we involve the data-
independent excess risk of ŵ, the Rademacher complexity
of hypothesis class H w.r.t. D and the regret for implying
the generalization. Detailed theoretical derivations are pro-
vided in the full version of the paper (Zhao, Cao, and Wan
2024).

Parameter Convergence
The hyperparameter γ for Ω(w) should be assigned with
considerable value to ensure the validity of the regulariza-
tion. To process, we derive the upper bound of this regular-
ization.
Lemma 1 Lγ

S̃
(w) is strongly-convex w.r.t. w ∈ W , and

Ω(wK) ≤
K∑
k=1

αkTLS̃(wk
B)/γ.

We set γ ≥
(∑K

k=1 α
k
BLS̃(wk

B)
)
/4R2 to ensure the valid-

ity of the regularization term.
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Accordingly, the following theorem shows the benefit of this
regularization, it can narrow the gap between the minimizer
wK and the optimal solution w∗ by applying the maintained
K experts adaptively and setting γ carefully.

Theorem 1 By setting γ ≥
(∑K

k=1 α
k
BLS̃(wk

B)
)
/4R2

and using w1
B ,w

2
B , . . . ,w

K
B as prior knowledge to obtain

wK from Lγ
S̃

(w), we have

∥∥wK −w∗
∥∥ ≤

√
2Ω(w∗) +

32β

γ2
+

6
∑K
k=1 α

k
BLS̃(wk

B)

γ
.

Although it is impossible for us to obtain w∗ since the
distribution for this interval is unknown, we can obtain
an approximate solution by using the regularization term
Ω(w). If the optimal solution is close to the weight aver-
age

∑K
k=1 α

k
Tw

k
T , the value of Ω(w∗) and the upper bound

of the difference
∥∥wK −w∗

∥∥ are small. Although it is also
impossible for us to measure Ω(w∗), we can measure the
weighted term

∑K
k=1 α

k
BLS̃(wk

B) in the above upper bound
where LS̃(wk

B) is the empirical error of the kth expert in the
latest interval. As a result, we know that the empirical min-
imizer wK of Lγ

S̃
(w) approaches the optimal solution w∗

of the original problem LD(w) if these experts considered
in the regularization term Ω(w) are effective in the latest in-
terval. To sharpen this bound, the weights for experts with
small empirical errors should be larger and the design of the
meta expert can meet the need. Therefore, we can draw a
conclusion that wK should be close to these experts with
small empirical errors in the domain W . This conclusion
leads to the design of the regularization term Ω(w).

Regret Bound
The following regret measures the performance of MOOE

RegretMOOE =
T∑
t=1

ft(wt)− min
w∈W

T∑
t=1

ft(w). (11)

However, it is hard to minimize the regret directly because
the output wt is related to a meta expert, an online expert,
and K − 1 offline experts. Therefore, we decompose the re-
gret into two regrets: RegretME w.r.t. the meta expert and
RegretKE w.r.t. online and offline experts. Further, we can
bound RegretKE by RegretOE which corresponds to the on-
line expert. Therefore, we can obtain the regret bound of
RegretMOOE by bounding RegretME and RegretOE separately.

RegretMOOE = RegretME + RegretKE

≤RegretME + RegretOE,
(12)

where

RegretME =
T∑
t=1

ft(wt)− min
k∈[K]

T∑
t=1

ft(w
k
t ),

RegretKE = min
k∈[K]

T∑
t=1

ft(w
k
t )−

T∑
t=1

ft(ŵ),

RegretOE =
T∑
t=1

ft(w
K
t )−

T∑
t=1

ft(ŵ).

(13)

The online expert wK
t never surpasses that of the best ex-

pert among all the K experts because it is also one of them.
Besides, it is impossible to obtain the regret for the offline
experts since they are pre-given and their parameters do not
change after receiving the loss ft(·). Specifically, we have
the following theorem.
Theorem 2 The MOOE method with step sizes {ν =

4
√

lnK
T , ηt = D√

βt
, t ∈ [T ]} guarantees the following re-

gret for all 1 ≤ T ≤ B,

RegretMOOE ≤
√
T lnK + 6D

√
Tβ,

and the number of experts K and samples T should satisfy

K ≤ 2 exp

(
6D
√
β − RegretKE√

T

)
,

to ensure that the advice from MOOE gives an equivalent or
better result than that from its online expert.
Accordingly, the regret of MOOE for the online interval is
O(
√
T ), which is consistent with that of the chosen online

expert. However, MOOE works better, i.e. RegretMOOE ≤
RegretOE, if K and T satisfy the condition in Theorem 2.
In theory, we have RegretKE ≤ RegretOE ≤ 6D

√
Tβ.

These offline experts are better than the online expert when
their corresponding data distributions are approximately
matched, or the number of observed labeled samples in the
current interval is limited. The first inequality is strict, and
K is bounded by a positive value. On the other hand, the
number of samples in an interval T ≤ B should not be too
large. Although the bound of K depends on RegretKE, it is
impossible to bound this term without any further assump-
tions because the K experts are trained from different data
sets. Fortunately, it is unnecessary to set K strictly accord-
ing to its conditions. We can apply MOOE if we believe that
the regret of the best offline expert can surpass that of the
online expert at least 6D

√
Tβ − RegretKE =

√
T lnK. The

assumption is mild since we can set a small K (like 2 or 3)
even without prior knowledge. An intuitive understanding is
that: if K is too large, it is difficult for the meta expert to
derive effective advice because of the dilution effect from
those weak experts; ifB is too large, the samples in an inter-
val may come from various distributions, and the assumption
about the setting may not hold.

Generalization Error Bound
The MOOE performance is measured by the excess risk
LD(w)−LD(w∗) where w = 1

T

∑T
t=1 wt is the average of

the online interval. To derive an algorithmic bound, we in-
troduce the intermediate term LD(ŵ) because ŵ as an em-
pirical minimizer of LS(ŵ) is necessary for analyzing the
regret. Taking the divide-and-conquer approach, we have

LD(w)− LD(w∗) ≤ 1

T

T∑
t=1

LD(wt)− LD(w∗) =

1

T

T∑
t=1

LD(wt)− LD(ŵ)︸ ︷︷ ︸
B1

+LD(ŵ)− LD(w∗)︸ ︷︷ ︸
B2

.
(14)
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The inequality is owing to the convexity of LD(·), which
implies LD( 1

T

∑T
t=1 wt) ≤ 1

T

∑T
t=1 LD(wt). The regret of

MOOE is applied to imply the upper bound of B1 by the
following lemma.
Lemma 2 Following Theorem 2, with probability at least
1− δ, we have

1

T

T∑
t=1

LD(wt)− LD(ŵ) ≤
√

lnK + 6D
√
β + 4 log(4/δ)√
T

.

Following the advanced study for any norm-regularized hy-
pothesis class (Yousefi et al. 2018) and the self-bound prop-
erty of smooth functions (Srebro, Sridharan, and Tewari
2010), we can derive the following data-dependent gener-
alization bound for B2 by the following lemmas.
Lemma 3 Exploiting the convexity, smoothness, and non-
negativity conditions of the loss function family L, with
probability at least 1 − δ, LD(ŵ) − LD(w∗) is bounded
by (

12βR2 + 4R
√
β
)

log(4/δ)

T
+ 4R

√
2β log(4/δ)

T
.

Lemma 4 Exploiting the hypothesis class H and the distri-
bution D of the observed data at the online interval, with
probability at least 1− δ, LD(ŵ)− LD(w∗) is bounded by

42
√

6β log
3
2 (64T )RD(H) + 3

√
log(4/δ)

T
.

where RD(H) is the Rademacher complexity of hypothesis
spaceH.

Using the excess risk bound framework in Eq. (14), we
obtain the following generalization error bound by consider-
ing Lemma 2, Lemma 3 and Lemma 4.
Theorem 3 Exploiting the loss function properties (con-
vexity, smoothness, and nonnegativity) of L, the hypothesis
class H, the data distribution D and the regret of MOOE,
with probability at least 1− δ, we have

LD(w)− LD(w∗) ≤
(
12βR2 + 4R

√
β
)

log(16/δ)

T

+
28R
√
β log

3
2 (64T )

T

√√√√ ∞∑
i=1

(TD2 ∧ eλi) +D
√
e


+

(
6(R+D)

√
β + 2

)√
log(16/δ) + 4 log(8/δ) +

√
lnK

√
T

.

The convergence rate for the generalization error is
O(1/

√
T ), which is consistent with that in stationary

and non-algorithmic cases (Kakade, Sridharan, and Tewar-
i 2008). The bound reflects the best result achieved so far
without any other assumptions. Furthermore, it is directly re-
lated to the sample complexity, and the result is algorithmic.
This result triggers an immediate problem: Can we use few-
er samples to achieve a desirable generalization error if the
used off-the-shelf online optimization method can achieve a
better regret? Unfortunately, the answer is not affirmative.
The intuition behind the problem is that the bottleneck is not
on the optimization method.

Dataset NSE DTEL Condor MOOE

Usenet 63.8 68.0 73.1 78.5
Weather 76.0 68.9 79.4 82.4

GasSensor 42.4 63.8 81.6 83.1
Powersupply 74.0 69.9 72.8 77.9

Electricity 79.0 81.0 84.7 85.6
Covertype 79.0 69.4 89.6 90.0
WESAD 70.4 73.8 86.3 89.9
Kitsune 73.9 71.6 87.3 93.4

Table 1: Comparisons on real-world data.

Experimental Results
In this section, we present empirical analysis to support our
proposed theory and model1.

Regret on Synthetic and Real-World Datasets
We address binary classification on non-stationary time se-
ries and compare MOOE with OGD using both synthetic and
real-world datasets (ijcnn and cod-rna) from the LIBSVM
repository (Chang and Lin 2011). On the synthetic dataset,
each interval features samples from two-dimensional Gaus-
sian distributions with dynamically changing means. For
the synthetic datasets, we divide the data into 15 interval-
s, applying Gaussian noise to simulate dynamic changes.
We maintain a maximum of five experts in MOOE to en-
sure fairness in comparison. Theoretical analyses show that
MOOE outperforms OGD in dynamic environments, main-
taining a convergence rate ofO(1/

√
T ). As shown in Fig. 2,

Empirical results indicate that MOOE achieves significantly
lower loss than OGD, particularly at the early stages with
few samples, due to the integration of offline expert knowl-
edge. Additionally, MOOE exhibits smaller regret over time,
adapting effectively to samples by adjusting the strategy of
integrating offline and online experts.

Predictive Accuracy
Real-World Non-Stationary Time Series To verify the
effect of the proposed MOOE method, we perform compar-
ison experiments following the setup (Zhao, Cai, and Zhou
2018). Specifically, we use eight real-world non-stationary
time series datasets, including Usenet (Katakis, Tsoumakas,
and Vlahavas 2008), Weather (Elwell and Polikar 2011),
GasSensor (Vergara et al. 2012), Powersupply (Dau et al.
2019), Electricity (Harries 1999) ,Covertype (Sun et al.
2018), WESAD (Schmidt et al. 2018), and Kitsune (Mirsky
et al. 2018). We compare MOOE with three state-of-the-
art methods, including NSE (Elwell and Polikar 2011), D-
TEL (Sun et al. 2018), and Condor (Zhao, Cai, and Zhou
2018). In the experiments, we adopt the maximum sample
size of an interval B = 50 and the maximal number of
maintained experts Kmax = 25. The overall mean of predic-
tive accuracy is reported, which indicates the average perfor-
mance of the algorithm over the whole time series. The com-

1The source code is publicly available at: https://github.com/
Lawliet-zzl/MOOE.
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Figure 2: Regret and loss of MOOE and OGD methods.

Algorithm
Email list Spam filtering

Accuracy Precision Recall Accuracy Precision Recall

NSE 70.0 76.5 76.5 90.4 84.5 79.6
DTEL 86.2 88.2 88.2 86.3 73.4 71.4
Condor 95.6 93.2 99.8 95.4 91.1 90.8
MOOE 97.1 94.0 99.8 96.0 93.4 92.8

Table 2: Comparisons on data with recurring concept drift.

Approach NSE DTEL Condor MOOE

Accuracy 64.9 58.7 80.1 86.5

Table 3: Comparisons on data with increasing noise.

parison results are reported in Table 1. The results show that
the proposed MOOE method outperforms other contenders.
Specifically, MOOE achieves 13.7% improvement over the
other state-of-the-art methods. This is because MOOE can
utilize the knowledge of the offline experts to adopt each
new online interval. These experimental results show the su-
periority of the proposed MOOE method.

Non-stationary Time Series with Recurring Concep-
t Drift To verify the versatility of the proposed MOOE
method, we conduct the comparisons on a special case
of non-stationary time series, i.e., recurring concept drift,
in which previous distributions may disappear and then
re-appear in the future. We consider two real-world non-
stationary time series with recurring concept drift, namely
Email list and Spam filtering (Katakis, Tsoumakas, and Vla-
havas 2010). The concepts are decided by the personal inter-
ests of users that change in a recurring manner. The results
are summarized in Table 2, which show that MOOE exhibits
an encouraging performance on the two datasets regarding
all measures. Specifically, MOOE achieves 11.8% improve-
ment in terms of accuracy. This is because the offline experts
can learn the knowledge on the previous distributions, and
the meta expert can reuse the knowledge when the distribu-
tion re-appear.

Non-Stationary Time Series with Increasing Levels of
Noise To verify the robustness of the proposed MOOE
method, we perform experiments on non-stationary time se-
ries with increasing levels of noise. Specifically, we adopt
Covertype and gradually add Gaussian noise until the time
series becomes completely random. The experiment result-
s presented in Table 3 indicate that MOOE achieves the
best prediction result. This is because MOOE can utilize the
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Figure 3: MOOE with different Kmax.

knowledge learned by the offline experts when the online
expert is hard to learn knowledge from the noisy data.

Effect of Maximal Number of Maintained Experts
To verify the effect of the hyper-parameter Kmax, we selec-
t its value from {5, 10, 15, 20, 25, 30, 35} and perform ex-
periments on Covertype. The experimental results presented
in Fig. 3 show that increasing Kmax can improve the clas-
sification performance and the performance stabilizes when
Kmax is sufficiently large, e.g., Kmax = 25. This is because
a large number of maintained experts Kmax causes more
knowledge can be stored and applied for the data in the
online interval. Furthermore, if Kmax is sufficiently large,
increasing its number cannot make MOOE obtain the new
knowledge that the offline experts have not explored.

Conclusion
In this paper, we address a general and realistic scenario in-
volving non-stationary time series, where several offline in-
tervals with various distributions exist alongside an online
interval. We propose MOOE, which employs a meta expert
to integrate static offline experts, learned from previous of-
fline intervals, with the dynamic online expert, updated in
the online interval. We provide theoretical guarantees re-
garding parameter convergence, regret bounds, and gener-
alization error bounds. Our theoretical results demonstrate
that MOOE achieves the same generalization error bound-
s in both stationary and non-stationary cases, proving that
leveraging knowledge from historical intervals is effective.
Future work will explore other assumptions and techniques
to overcome bottlenecks in the generalization bound.
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