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Abstract

We investigate the online nonsubmodular optimization with
delayed feedback in the bandit setting, where the loss
function is α-weakly DR-submodular and β-weakly DR-
supermodular. Previous work has established an (α, β)-regret
bound of O(nd1/3T 2/3), where n is the dimensionality and
d is the maximum delay. However, its regret bound relies
on the maximum delay and is thus sensitive to irregular de-
lays. Additionally, it couples the effects of delays and ban-
dit feedback as its bound is the product of the delay term
and the O(nT 2/3) regret bound in the bandit setting with-
out delayed feedback. In this paper, we develop two algo-
rithms to address these limitations, respectively. Firstly, we
propose a novel method, namely DBGD-NF, which employs
the one-point gradient estimator and utilizes all the available
estimated gradients in each round to update the decision. It
achieves a better O(nd̄1/3T 2/3) regret bound, which is rel-
evant to the average delay d̄ = 1

T

∑T
t=1 dt ≤ d. Secondly,

we extend DBGD-NF by employing a blocking update mech-
anism to decouple the joint effect of the delays and ban-
dit feedback, which enjoys an O(n(T 2/3 +

√
dT )) regret

bound. When d = O(T 1/3), our regret bound matches the
O(nT 2/3) bound in the bandit setting without delayed feed-
back. Compared to our first O(nd̄1/3T 2/3) bound, it is more
advantageous when the maximum delay d = o(d̄2/3T 1/3).
Finally, we conduct experiments on structured sparse learn-
ing to demonstrate the superiority of our methods.

Introduction
Online learning is a powerful framework that has been used
to model various sequential prediction problems (Shalev-
Shwartz 2012). It can address scenarios in which decisions
are made from a small set (Hazan and Kale 2012), a con-
tinuous space (Hazan et al. 2016), or a combinatorial fea-
sible domain (Cesa-Bianchi and Lugosi 2012). In this pa-
per, we study the online nonsubmodular optimization (Lin
et al. 2022), an emerging branch of the online learning,
which appears in many machine learning tasks like struc-
tured sparse learning (El Halabi and Cevher 2015), Bayesian
optimization (González et al. 2016), and column subset se-
lection (Sviridenko, Vondrák, and Ward 2017), etc. Similar
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to the classical online convex optimization (OCO) (Zinke-
vich 2003), it is typically formulated as a game between
an online player and an adversary. In each round t ∈ [T ],
the player begins by selecting a subset decision St ⊆ [n].
When the player submits its decision St, the adversary
chooses a nonsubmodular loss function ft(·) : 2[n] 7→ R
and then the player suffers a loss ft(St), where ft(·) =
f̄t (·)−f

t
(·), f̄t (·) is α-weakly diminishing return submod-

ular (DR-submodular), f
t
(·) is β-weakly diminishing return

supermodular (DR-supermodular) and 2[n] represents all the
subset of [n].1

The player aims to minimize the cumulative loss over T
rounds, equivalently minimizing the regret:

Reg(T ) ≜
T∑

t=1

ft(St)− min
S⊆[n]

T∑
t=1

ft(S), (1)

which compares the excess loss suffered by the player with
that of the best decision chosen in hindsight. As pointed out
by El Halabi and Jegelka (2020), the optimization problem
minS⊆[n]

∑T
t=1 ft(S) is NP-hard, thus it is impossible to

find the optimal decision in polynomial time. For this rea-
son, we follow the previous work (Lin et al. 2022) and apply
the (α, β)-regret to measure the performance of the online
player, which is defined as

Regα,β(T ) ≜
T∑

t=1

ft(St)−
(
1

α
f̄t (S

⋆)− βf
t
(S⋆)

)
, (2)

where S∗ = argminS⊆[n]

∑T
t=1 ft(S) and (α, β) are the

approximation factors achieved by a certain offline algo-
rithm. Lin et al. (2022) are the first to investigate the on-
line nonsubmodular optimization and develop a method that
achieves an (α, β)-regret bound of O(

√
nT ), building on the

Lovász extension (Lovász 1983) and the convex relaxation
model (El Halabi and Jegelka 2020), where n is the dimen-
sionality.

In lots of real-world scenarios, there may be a potential
delay between the query of the player and the correspond-
ing response (Quanrud and Khashabi 2015; Wan et al. 2022,
2023). To address the delayed scenario, Lin et al. (2022) also

1The definition of the α-weakly DR-submodular and β-weakly
DR-supermodular can be found in Definition 2.
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Setting Method (α, β)-regret bound

bandit DBAGD (Lin et al. 2022) O
(
nd1/3T 2/3

)
bandit BDGD-NF (Theorem 1) O

(
nd̄1/3T 2/3

)
bandit BDBGD-NF (Theorem 3) O

(
n(T 2/3 +

√
dT )

)
full DOAGD (Lin et al. 2022) O

(√
ndT

)
full DOGD-NF (Theorem 2) O

(√
nd̄T

)
Table 1: Summary of results for online nonsubmodular op-
timization under different settings, where n is the dimen-
sionality, d is the maximum delay and d̄ = 1

T

∑T
t=1 dt is

the average delay over T rounds. For simplicity, we use the
abbreviations: full → full-information setting with delayed
feedback, bandit → bandit setting with delayed feedback.

explore the problem of online nonsubmodular optimization
with delayed feedback, where the online player incurs an
arbitrary delay dt ≥ 1 in receiving the response. To han-
dle the delayed feedback, they utilize the pooling strategy
(Héliou, Mertikopoulos, and Zhou 2020) to propose delay
online approximate gradient descent (DOAGD), which en-
joys an O(

√
ndT ) regret bound, where d is the maximum

delay. Moreover, they consider a more challenging setting,
bandit feedback, in which the online player does not receive
any additional information about the loss function ft(·) (e.g.,
its gradient) beyond the value ft(St), and develop delay on-
line approximate gradient descent (DBAGD), achieving an
O(nd1/3T 2/3) regret bound. However, their result for ban-
dit setting with delayed feedback, summarized in Table 1,
has two limitations. Firstly, it relies on the maximum delay
d, which renders it sensitive to irregular delays. Secondly,
it is the product of the delay term and the O(nT 2/3) regret
bound in the non-delayed bandit setting. This arises from
DBAGD coupling the effects of the delays and bandit feed-
back, resulting in a discontented regret bound.

To overcome these limitations, we revisit the online non-
submodular optimization with delayed feedback in the ban-
dit setting. Specifically, we first develop a delayed algo-
rithm to establish a regret bound that is relevant to the av-
erage delay. Our proposed method, named delayed bandit
gradient descent for nonsubmodular function (DBGD-NF),
achieves an enhanced O

(
nd̄1/3T 2/3

)
regret bound, where

d̄ = 1
T

∑T
t=1 dt ≤ d represents the average delay. The

primary idea is to employ the one-point gradient estimator
(Hazan and Kale 2012; Lin et al. 2022) and use all available
estimated gradients to update the decision in each round, in-
stead of utilizing the oldest one like DBAGD. Furthermore,
as a by-product, if the online player has access to the gradi-
ent of the loss function, we can substitute the estimated gra-
dient in DBGD-NF with the true gradient. Our algorithm,
referred to as delayed online gradient descent for nonsub-
modular function (DOGD-NF), enjoys a better O(

√
nd̄T )

regret bound for the full-information setting with delayed
feedback.

In our pursuit of decoupling the joint effect of delayed
feedback and the gradient estimator, we develop the block-
ing delayed bandit gradient descent for nonsubmodular
function (BDBGD-NF). Drawing inspiration from Wan et al.
(2024), we adopt the blocking update mechanism (Zhang
et al. 2019; Garber and Kretzu 2020; Wang et al. 2023,
2024) with DBGD-NF. Particularly, we divide the total T
rounds into several blocks of size K and update the deci-
sion at the end of each block using the estimated gradients
from the blocks where all gradients are available. By setting
a appropriate block size K, we can reduce the variance of
the one-point gradient estimator. Leveraging this technique,
BDBGD-NF achieves a superior O(n(T 2/3 +

√
dT )) regret

bound. When the algorithm faces small delays, i.e., maxi-
mum delay d = O(T 1/3), this regret bound matches the
existing O(nT 2/3) regret bound in the non-delayed setting
(Lin et al. 2022), benefiting from the blocking update mech-
anism.

On the other hand, when the impact of the delayed feed-
back d is substantial, i.e., d = Ω(T 1/3), our regret bound
is on the same order as the O(

√
nd̄T ) bound we establish

for the full-information setting in terms of d and T under
the worst case, where d̄ = Θ(d). Moreover, it is better than
our first O

(
nd̄1/3T 2/3

)
bound when the maximum delay

d = o(d̄2/3T 1/3). Notably, compare to Wan et al. (2024),
BDBGD-NF is specifically designed for online nonsubmod-
ular optimization, making it more challenging to analyze.
Finally, we compare our algorithms with the state-of-the-art
(SOTA) methods through numerical experiments to demon-
strate the robustness and effectiveness in handling delayed
and bandit feedback effects.

To summarize, this paper makes the following contribu-
tions to online nonsubmodular optimization with delayed
feedback:

• We propose two algorithms for online nonsubmodular
optimization with delayed feedback to derive the re-
gret bounds that are relevant to the average delay. Our
methods reduce the regret bounds to O(

√
nd̄T ) and

O
(
nd̄1/3T 2/3

)
for full-information and bandit feedback

settings, respectively.
• To decouple the joint effect of the delayed and bandit

feedback, we develop a novel algorithm by utilizing a
blocking update technique, which enjoys an O(n(T 2/3+√
dT )) regret bound.

Related Work
In this section, we briefly introduce the related work of sub-
modular optimization and nonsubmodular optimization.

Submodular Optimization
Submodular optimization has garnered increasing interest in
various practical applications, such as sparse reconstruction
(Bach 2010; Das, Dasgupta, and Kumar 2012; Liao et al.
2023), graph inference (Gomez-Rodriguez and Schölkopf
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2012; Defazio and Caetano 2012), video analysis (Zheng
et al. 2014), object detection (Song et al. 2014), etc. The
primary property of a submodular function is diminishing
returns, meaning that adding an element to a larger set pro-
vides less incremental gain than adding it to a smaller set.
Early research (Badanidiyuru and Vondrák 2014; Krause
and Golovin 2014) on submodular optimization mainly fo-
cuses on the offline setting, which may be unsuitable for
sequential decision-making problems. To overcome this is-
sue, Hazan and Kale (2012) investigate the online submod-
ular optimization, where the player chooses a subset from
a ground set of n elements in round t, and then observe a
submodular loss function. Based on the Lovász extension
(Lovász 1983), they extend online gradient descent (OGD)
(Zinkevich 2003) and bandit gradient descent (BGD) (Flax-
man, Kalai, and McMahan 2005) into submodular optimiza-
tion in both full-information and bandit feedback settings,
establishing O(

√
nT ) and O(nT 2/3) regret bounds, respec-

tively, where n is the dimensionality.

Nonsubmodular Optimization
Although submodularity is a natural assumption, the objec-
tive function is not always exactly submodular in various
applications, such as structured sparse learning (El Halabi
and Cevher 2015), Bayesian optimization (González et al.
2016), and column subset selection (Sviridenko, Vondrák,
and Ward 2017), etc. Instead, it satisfies a weaker version
of the DR property, like α-weakly DR-submodular and β-
weakly DR-supermodular (Lehmann, Lehmann, and Nisan
2006). El Halabi and Jegelka (2020) provide the first ap-
proximation guarantee for nonsubmodular minimization by
developing an approximate projected subgradient method.
Nevertheless, they only focus on the offline setting.

Lin et al. (2022) pioneer the study of online nonsubmod-
ular optimization and introduce the (α, β)-regret to mea-
sure the performance of the online player, which is defined
in (2). Based on the Lovász extension (Lovász 1983) and
the convex relaxation model (El Halabi and Jegelka 2020),
they propose online approximate gradient descent (OAGD),
which obtains an O(

√
nT ) regret bound. Particularly, it uses

the subgradient of the convex relaxation function to perform
a gradient descent step over the Lovász extension domain.
Then it samples the decision St from a certain distribution
over all possible sets at round t. Moreover, they also consider
the full-information and bandit settings with delay feedback,
which are more complex to analyze. To handle the delay
feedback, they further extend OAGD by adopting a pool-
ing strategy (Héliou, Mertikopoulos, and Zhou 2020). Their
method, namely DOAGD, which keeps a pool to store all
the available delayed information and utilizes the oldest re-
ceived but not utilized gradient to update the decision in each
round, achieves an O(

√
ndT ) regret bound, where d is the

maximum delay. Nevertheless, it depends on the maximum
delay, and thus is sensitive to irregular delays. In the bandit
setting, since the player can only observe the loss value of
its decision St, they employ the importance weighting tech-
nique to estimate the gradient. In particular, St is chosen
from a distribution that is related to the decision with prob-

ability 1 − µ (0 < µ < 1) and a random distribution with
probability µ for exploration, ensuring the variance of the
gradient is upper bounded by O(n2/µ). While they estab-
lish an O(nd1/3T 2/3) regret bound, their method couples
the effects of the delays and gradient estimator.

Preliminary
In this section, we will provide essential definitions and ba-
sic setup for optimization of the nonsubmodular functions.

Definitions and Assumptions
Definition 1 For any function f(·) : 2[n] 7→ R, we define
f(i | S) = f({i}

⋃
S) − f(S) to denote the marginal gain

of adding an element i to S. Moreover, f(·) is normalized
if and only if f(∅) = 0 and nondecreasing if and only if
f(A) ≤ f(B) for any A ⊆ B. Π[0,1]n is the projection onto
the domain [0, 1]n, which can be efficiently implemented as
a simple clipping operation.

Definition 2 A function f(·) : 2[n] 7→ R is α-weakly DR-
submodular with α > 0 if

f(i | A) ≥ αf(i | B), for all A ⊆ B, i ∈ [n]\B.

If this inequality holds when α = 1, f(·) is submodular.
Similarly, f(·) : 2[n] 7→ R is β-weakly DR–supermodular

with β > 0 if

f(i | B) ≥ βf(i | A), for all A ⊆ B, i ∈ [n]\B.

f(·) is supermodular when β = 1.
We define that f(·) is (α, β)-weakly DR-modular if both

of the above inequalities hold simultaneously.

Building on the above definitions, we formulate the
problem of minimizing structured nonsubmodular functions
(El Halabi and Jegelka 2020; Lin et al. 2022):

f(S) := f̄(S)− f(S), (3)

where S ⊆ [n]. Afterwards, we introduce two common as-
sumptions in the online nonsubmodular optimization.

Assumption 1 All the nonsubmodular functions f(·) de-
fined in (3) satisfy f̄(S) + f(S) ≤ L for all S ⊆ [n].

Assumption 2 f̄(·) and f(·) defined in (3) are normalized
and non-decreasing. f̄(·) is α-weakly DR-submodular and
f(·) is β-weakly DR-supermodular.

Then we give an application of the online nonsubmodular
optimization to provide practical insights of these assump-
tions, which is also used in our later experiments.

Structured sparse learning. This problem aims to learn
a sparse parameter vector whose support satisfies a specific
structure, such as group-sparsity, clustering, tree-structure,
or diversity (Kyrillidis et al. 2015). It is typically formulated
as minx∈Rn ℓ(x) + γF (supp(x)), where ℓ(·) : Rn 7→ R is
the loss function, F (·) : 2[n] 7→ R is a set function that
imposes restrictions on the support set and γ is a trade-
off parameter. Previous approaches (Bach 2010; El Hal-
abi and Cevher 2015) often replace the discrete regular-
izer F (supp(x)) with its closest convex relaxation, which
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is computationally tractable only when F (·) is submodular.
El Halabi and Jegelka (2020) introduce an alternative formu-
lation by using a nonsubmodular regularizer, which is better
in practice, defined as

min
S⊆[n]

H(S) = γF (S)−G(S), (4)

where G(S) = ℓ(0) − minsupp(x)⊆S ℓ(x) is a normalized
non-decreasing set function. El Halabi and Jegelka (2020)
have pointed out that when ℓ(·) is smooth, strongly con-
vex and is generated from random data, G(·) is weakly DR-
modular. Moreover, if F (·) is α-weakly DR-submodular, the
equation (4) can be transformed into (3) so that we can han-
dle it directly. For example, F (·) is often chosen as the range
cost function (Bach 2010) (α = 1

n−1 and n is the dimen-
sionality), applied in the time-series and cancer diagnosis
(Rapaport, Barillot, and Vert 2008), and the cost function
(α = 1+a

1+b−a and a, b are cost parameters), applied in the
healthcare (Sakaue 2019).

Since nonsubmodular functions are defined over the dis-
crete domain, determining their minimum values is a chal-
lenging task. Therefore, we introduce the Lovász extension
(Lovász 1983) to transform a function f(·) defined over a
discrete domain [n] to a new function fL(·) over the unit hy-
percube [0, 1]n. The extended function fL(·) is convex if and
only if f(·) is submodular. For nonsubmodular functions, we
can exploit the convex relation (El Halabi and Jegelka 2020),
enabling the use of convex optimization algorithms on the
transformed function.

Lovász Extension and Convex Relaxation
Lovász extension ensures that the minima of the function
over the domain [0, 1]n also recover the minima of the orig-
inal function f(·). In this way, we can reduce the complex
optimization task over domain [n] to a simpler convex opti-
mization problem. To clarify this reduction process, we start
with some necessary definitions.

Definition 3 A max chain of subsets of [n] is a collection of
sets {A0, ..., An}, and ∅ = A0 ⊆ A1 ⊆ ... ⊆ An = [n].

For any x ∈ [0, 1]n = X , we introduce a unique associ-
ated permutation π : [n] 7→ [n] such that π(i) = j, meaning
that xj is the i-th largest number in x. Notably, we have 1 ≥
xπ(1) ≥ ... ≥ xπ(n) ≥ 0 and let xπ(0) = 1,xπ(n+1) = 0 for
simplicity. If we set Ai = {π(1), ..., π(i)} for all i ∈ [n] and
A0 = ∅, the vector x can be expressed as a convex combina-
tion, i.e., x =

∑n
i=0 λiχ(Ai), where λi = xπ(i) − xπ(i+1)

and
∑n

i=0 λi = 1, λi ∈ [0, 1] (Hazan and Kale 2012). For
any set S ⊆ [n], χ(·) : 2[n] 7→ {0, 1}n is an indicator func-
tion χ(S)i = 1 for all i ∈ S and χ(S)i = 0 for all i /∈ S.
Next, we give the definition of the Lovász extension.

Definition 4 For any submodular function f(·), its Lovász
extension fL(·) : X = [0, 1]n 7→ R is defined as fL(x) =∑n

i=0(xπ(i)−xπ(i+1))f(Ai) =
∑n

i=0 xπ(i)f(π(i) | Ai−1).

It is not hard to verify that fL(χ(S)) = f(S) for any S ⊆
[n]. Therefore, minimizing the Lovász extension is equiva-
lent to minimizing the original submodular function over all

possible sets. Moreover, Edmonds (1970) has pointed out
that the subgradient g of fL(x) can be computed by

gπ(i) = f (Ai)− f (Ai−1) for all i ∈ [n]. (5)
However, when f(·) is not submodular, many properties

break down. For example, fL(·) is non-convex, which is
harder to analyze. To tackle the nonsubmodular functions,
we adopt the convex closure fC(·), which is defined as:
Definition 5 The convex closure fC(·) : [0, 1]n 7→ R for
a nonsubmodular function f(·) is the point-wise largest
convex function which always lower bounds f(·). Addi-
tionally, fC(·) is the tightest convex extension of f(·) and
minS⊆[n] f(S) = minx∈[0,1]n fC(x).

Definition 5 gives us a simpler way to analyze the non-
submodular function. Unfortunately, it is NP-hard to eval-
uate and optimize fC(·) (Vondrák 2007). Nevertheless, we
can utilize the proposition 3.1 in Lin et al. (2022) to derive
the approximation:
Lemma 1 Assuming f(·) satisfies Assumption 2 and g is
calculated according to (5) for all A ⊆ [n] and x ∈ X , we
have the following guarantees

fL(x) = ⟨g,x⟩ ≥ fC(x),∑
i∈A

gi ≤
1

α
f̄(A)− βf(A),

fC(x) ≤ fL(x) = ⟨g,x⟩ ≤ 1

α
f̄C(x)− βf

C
(x).

Remark 1 Lemma 1 demonstrates how Lovász extension
fL(x) approximates the convex closure fC(x) so that the
subgradient of fL(x) can serve as the approximate subgra-
dient for fC(x) (El Halabi and Jegelka 2020), which plays
an important role in our analysis.

Problem Setup
We consider the online nonsubmodular optimization with
delayed feedback in the bandit setting, where the loss func-
tion ft(·) is defined in (3), and satisfies Assumption 1 and
Assumption 2. In each round t, the player makes a de-
cision St ⊆ [n] and then triggers a delay dt when re-
ceiving the loss value. The response will arrive at round
t+ dt − 1 and the player receives {fk(Sk)|k ∈ Ft}, where
Ft = {k | k + dk − 1 = t} represents the index set of re-
ceived loss values in round t. To measure the performance
of the online player, we follow the previous work (Lin et al.
2022) and apply the (α, β)-regret defined in (2). It compares
the loss of the player’s decisions to the result returned by an
offline algorithm that approximately solves the optimization
problem minS⊆[n]

∑T
t=1 ft(S) in polynomial time, which is

different from the vanilla regret (Zinkevich 2003).

Main Results
In this section, we first develop a delayed algorithm for ban-
dit setting to establish a regret bound that is relevant to the
average delay. As a by-product, we demonstrate that it can
be slightly adjusted into the full-information setting to ob-
tain a better regret bound. Finally, we present our blocking
method to decouple the joint effect of the delays and bandit
feedback, further enhancing the regret bound.
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Algorithm 1: DBGD-NF

Require: Learning rate η
1: Initialize x1 ∈ [0, 1]n

2: for t = 1 to T do
3: Let 1 ≥ xt,π(1)

≥ xt,π(2)
≥ . . .xt,π(n)

≥ 0 be
the sorted entries in decreasing order with At,i =
{π(1), . . . , π(i)} for all i ∈ [n] and At,0 = ∅. Define
xt,π(0)

= 1,xt,π(n+1)
= 0

4: For 0 ≤ i ≤ n, calculate λt,i = xt,π(i)
− xt,π(i+1)

5: Sample St from the distribution defined in (6)
6: Observe the loss ft(St)

7: Calculate f̂t,i according to (7)
8: Compute the estimated gradient ĝ by (8) and incur a

delay dt ≥ 1
9: Receive the gradient set {ĝk|k ∈ Ft}

10: Update xt according to (9)
11: end for

Results Related to the Average Delay
Existing literature (Lin et al. 2022) on online nonsubmodu-
lar optimization with delayed feedback in the bandit setting
adopts a pooling strategy (Héliou, Mertikopoulos, and Zhou
2020) to handle the arbitrary delays, which only uses the old-
est available information in a gradient pool. Since the gradi-
ent may be delayed by d rounds, its regret bound relies on
the maximum delay d. To mitigate the effect of delayed feed-
back, motivated by previous work (Quanrud and Khashabi
2015), we utilize all the gradients received in round t to up-
date the decision, rather than the oldest one. In the bandit
setting, the online player only has access to the loss value.
To deal with this issue, we employ the one-point estimator
(Hazan and Kale 2012; Lin et al. 2022) to compute the unbi-
ased gradient. Our method, DBGD-NF, is detailed in Algo-
rithm 1. In each round t, St is sampled from the distribution

P (St = At,i) = (1− µ)λt,i +
µ

n+ 1
, (6)

where λt,i = xt,π(i)
− xt,π(i+1)

and µ ∈ (0, 1) is the explo-
ration probability. Then we utilize the one-point estimator to
derive the gradient; that is, we compute

f̂t,i =
1 (St = At,i)

(1− µ)λt,i +
µ

n+1

ft (St) , (7)

where 1(·) is an indicator function, and calculate the unbi-
ased gradient

ĝt,π(i) = f̂t,i − f̂t,i−1. (8)
Notably, we do not assume that the information is imme-
diately available. Instead, owing to incurring a delay dt, we
only receive the information at the end of the round t+dt−1,
and we only present the calculation of the gradient for sim-
plicity. Then we use all the available estimated gradients to
update the decision

xt+1 = Π[0,1]n

[
xt −

∑
k∈Ft

ĝk

]
(9)

Next, we establish the regret bound of Algorithm 1.

Algorithm 2: DOGD-NF

Require: Learning rate η
1: Initialize x1 ∈ [0, 1]n

2: for t = 1 to T do
3: Let 1 ≥ xt,π(1)

≥ xt,π(2)
≥ . . .xt,π(n)

≥ 0 be
the sorted entries in decreasing order with At,i =
{π(1), . . . , π(i)} for all i ∈ [n] and At,0 = ∅. Define
xt,π(0)

= 1,xt,π(n+1)
= 0

4: For 0 ≤ i ≤ n, calculate λt,i = xt,π(i)
− xt,π(i+1)

5: Sample St from the distribution defined in (10)
6: Observe the loss ft(St)
7: Compute the estimated gradient gt by (11) and incur

a delay dt ≥ 1
8: Receive the gradient set {gk|k ∈ Ft}
9: Update xt according to (12)

10: end for

Theorem 1 Under Assumption 1 and Assumption 2, by set-
ting µ = nd̄1/3

T 1/3 , η = 1
Ld̄1/3T 2/3 , DBGD-NF ensures

E
[
Regα,β(T )

]
≤ O

(
nd̄1/3T 2/3

)
,

where n is the dimensionality and d̄ = 1
T

∑T
t=1 dt is the

average delay.

Remark 2 Compared to the existing O(nd1/3T 2/3) regret
bound, DBGD-NF reduces the effect of delay and achieves
a better O(nd̄1/3T 2/3) regret bound. It is worth noting that
DBGD-NF requires the prior knowledge of the average de-
lay to set the learning rate. Quanrud and Khashabi (2015)
also encounter this issue and introduce a simple solution
by utilizing the doubling trick (Cesa-Bianchi et al. 1997) to
adaptively adjust the learning rate, thereby overcoming this
limitation, which we can also employ to attain an equivalent
O
(
nd̄1/3T 2/3

)
bound.

Additionally, we also observe that DBGD-NF can be
slightly adjusted to the full-information setting to derive a
regret bound that relies on the average delay. Our modified
method, DOGD-NF, is summarized in Algorithm 2. In each
round t, we sample St from the distribution

P (St = At,i) = λt,i, (10)

where At,i = {π(1), . . . , π(i)}, At,0 = ∅ and λt,i = xt,π(i)
−

xt,π(i+1)
. Similar to DOAGD (Lin et al. 2022), we also em-

ploy the convex relaxation based on the Lovász extension to
compute the approximate subgradient

gt,π(i) = ft(At,i)− ft(At,i−1). (11)

Finally, we use all the available gradients to perform a gra-
dient descent step

xt+1 = Π[0,1]n

[
xt −

∑
k∈Ft

gk

]
. (12)

Then we present the theoretical guarantee of Algorithm 2.
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Theorem 2 Under Assumption 1 and Assumption 2, by set-
ting η =

√
n

L
√
d̄T

, DOGD-NF ensures

E
[
Regα,β(T )

]
≤ O(

√
nd̄T ).

To better showcase the improvement of our results, we
provide an example that clearly demonstrates the enhance-
ment through the better exponents of T .
Example 1 Consider a situation: d1:T satisfy d1:

√
T = T

2

and d√T+1:T = 1. Our methods achieve O(
√
nT 3/4) and

O(nT 5/6) regret bounds, while the bounds of DOAGD and
DBAGD are O(

√
nT ) and O(nT ), respectively.

Decoupled Result
While BOGD-NF achieves a SOTA regret bound with re-
spect to the average delay d̄, its dependence on the maxi-
mum delay d remains suboptimal. In the following, we in-
troduce a modification of BOGD-NF aimed at improving the
regret dependence on the maximum delay. Inspired by Wan
et al. (2024), we combine DBGD-NF with a blocking up-
date technique (Zhang et al. 2019; Garber and Kretzu 2020;
Wang et al. 2023, 2024) to reduce the effect of delays. The
essential idea is dividing total T rounds into blocks with size
K and choosing the decision St from the same mixture dis-
tribution per block, so that we can reduce the bound of the
estimated gradients suffered within each block. It is not hard
to verify that the bound on the sum of gradients within a
block is

E

∥∥∥∥∥∥
(m+1)K∑
t=mK+1

ĝt

∥∥∥∥∥∥
 ≤ O

(
n
(√

K/µ+K
))

.

By choosing a proper block size K = Θ(1/µ), this bound
can be enhanced to O (nK), which is smaller than the
O(nK/

√
µ) bound of BDAGD. Based on this blocking up-

date mechanism, we reduce the effect of delays on the regret
from O(nηdT

√
µ) to O(nηdT ), so that we decouple the ef-

fect of the delays and gradient estimator.
Our designed algorithm, BDBGD-NF, is presented in Al-

gorithm 3. We first simply initialize x1,y1 to be any point in
[0, 1]n and available gradient set for the each block Pi = ∅.
In each block m, we sample the decision set St from the
same mixture distribution (6) related to ym and employ the
one-point gradient estimator to derive the gradient.

At the end of each block m, we will identify the block
where all the queries are obtained and use the all gradients
from available blocks to update ym

ym+1 = Π[0,1]n

ym −
∑
i∈Am

∑
ĝk∈Pi

ĝk

 . (13)

In the following, we present the following theorem to es-
tablish the theoretical guarantee for BDBGD-NF.
Theorem 3 Under Assumption 1 and Assumption 2, by set-
ting K = T

1
3 , µ = nT−1/3, η = min{ 1

LT 2/3 ,
1

L
√
dT

},
BDBGD-NF ensures

E
[
Regα,β(T )

]
≤ O

(
n(T

2
3 +

√
dT )

)
.

Algorithm 3: BDBGD-NF

Require: η, µ ∈ (0, 1),K
1: Initialize point x1 ∈ [0, 1]n, set y1 = x1 and set the

gradient pool for each block Pi = ∅, i = 1, ..., ⌈T/K⌉
2: for m = 1 to ⌈T/K⌉ do
3: Set block pool Am = ∅
4: for time step t = (m− 1)K +1 to min{mK,T} do
5: Choose xt = ym

6: Let 1 ≥ xt,π(1)
≥ xt,π(2)

≥ . . .xt,π(n)
≥ 0 be

the sorted entries in decreasing order with At,i =
{π(1), . . . , π(i)} for all i ∈ [n] and At,0 = ∅. De-
fine xt,π(0)

= 1,xt,π(n+1)
= 0

7: For 0 ≤ i ≤ n, calculate λt,i = xt,π(i)
− xt,π(i+1)

8: Sample St from the distribution defined in (6)
9: Observe the loss ft(St)

10: Calculate f̂t,i according to (7)
11: Compute the estimated gradient ĝt by (8) and incur

a delay dt ≥ 1
12: Receive the set {ĝk|k ∈ Ft} and update each gra-

dient to its gradient pool Pj = Pj

⋃
{ĝk}, where

j = ⌈k/K⌉ is the block that ĝk belongs to
13: end for
14: If |Pi| = K, Am = Am

⋃
{i}, which denotes the

index of the block where all the queries arrive.
15: Perform gradient descent to ym+1 according to (13)
16: For i ∈ Am, set Pi = ∅
17: end for

Remark 3 When d = O(T 1/3), the regret bound of our
method matches the previous O(nT 2/3) regret bound (Lin
et al. 2022) in the bandit setting without delayed feedback.
Otherwise, this regret bound is also on the same order in
terms of d and T with the O(

√
nd̄T ) regret in the full-

information setting with delayed feedback in the worst case,
where d̄ = Θ(d). Moreover, it is better than the former
O
(
nd̄1/3T 2/3

)
bound when d = o(d̄2/3T 1/3).

Experiments
In this section, we evaluate the effectiveness of our pro-
posed methods through numerical experiments. We com-
pare our methods with the SOTA methods, DOAGD and
DBAGD (Lin et al. 2022) on structured sparse learning with
delayed feedback. When it comes to hyper-parameter tun-
ing, we set η =

√
n

L
√
d̄T

for DOGD-NF, η = 1
Ld̄1/3T 2/3 and

µ = qnd̄1/3

T 1/3 for DBGD-NF and η = min{ 1
LT 2/3 ,

1
L
√
dT

},

µ = qn
T 1/3 and K = T 1/3 for BDBGD-NF. As for other

methods, we choose η =
√
n

L
√
dT

for DOAGD, and η =

1
Ld1/3T 2/3 and µ = qnd1/3

T 1/3 for DBAGD, which are according
to Theorem 5.2 and Theorem 5.4 in Lin et al. (2022). More-
over, we perform a grid search to select the parameter q from
the set {0.01, 0.1, 1}. All the experiments are conducted in
Python 3.7 with two 3.1 GHz Intel Xeon Gold 6346 CPUs
and 32GB memory.

Setup. We conduct experiments on structured sparse
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Figure 1: Results for full-information.
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Figure 2: Results for bandit feedback.

learning defined in (4). Following the setup in Lin et al.
(2022), we choose Ft(S) = max(S) − min(S) + 1 for
all S ̸= ∅ and F (∅) = 0. We consider a simple lin-
ear regression problem, where the sparse optimal solution
x∗ ∈ Rn only consists k consecutive 1, with the remain-
ing positions being 0. We compute yt = Atx

∗ + ϵt, where
each row of At ∈ Rs×n is a vector i.i.d. sampled from a
Gaussian distribution and ϵt ∈ Rs is a Gaussian noise vec-
tor with standard deviation 0.1. We choose the square loss
ℓt(x) = ∥Atx− yt∥2 /2 and random delays in our experi-
ments, i.e., 1 ≤ dt ≤ d, where d is the max delay. For all
experiments, we set rounds T = 8000 such that the block
K is 20, dimension n = 10, number of samples s = 128,
trade-off parameter γ = 0.1 and sparse parameter k = 2.

Results. We report the regret against the number of
rounds in full-information and bandit settings under differ-
ent maximum delays d within the set {10, 20, 500} in Figure
1 and Figure 2, respectively. For the delays dt, we sample
them uniformly at random from the range [1, d]. We observe
that DOGD-NF suffers less loss compared to DOAGD under
full-information with delayed feedback because it utilizes
all available gradients rather than just the oldest one. When
the maximum delay increases, the superiority becomes more
pronounced due to the large gap between the average de-
lay d̄ and maximum delay d. As evident from Figure 2, our
DBGD-NF also experiences less loss, which is consistent
with our theories. Additionally, BDBGD-NF obtains the best
performance and consistently yields lowest regret as the de-

lay changes in the bandit setting, which aligns with its theo-
retical guarantee.

Conclusion and Future Work
In this paper, we study the online nonsubmodular opti-
mization with delayed feedback in the bandit setting and
develop several algorithms to improve the existing regret
bound. Firstly, our BDGD-NF and DOGD-NF achieve bet-
ter O(nd̄1/3T 2/3) and O(

√
nd̄T ) regret bounds for bandit

and full-information settings, respectively, which are rele-
vant to the average delay. Furthermore, to decouple the joint
effect of delays and bandit feedback, we combine BDGD-
NF with a blocking update technique. Our BDBGD-NF ob-
tains a superior O(n(T 2/3 +

√
dT )) regret bound. Finally,

the experimental results also demonstrate the effectiveness
of our methods.

One might notice that the regret bound of BDBGD-NF de-
pends on the maximum delay rather than the average delay,
unlike the former results. In the future, we will investigate
how to develop a decoupled algorithm to obtain the regret
bound that relies on the average delay. Moreover, we will
try to deal with the online nonsubmodular optimization in
the non-stationary environments.

Acknowledgments
This work was partially supported by NSFC (U23A20382,
62361146852), the Collaborative Innovation Center of

21998



Novel Software Technology and Industrialization, and the
Open Research Fund of the State Key Laboratory of
Blockchain and Data Security, Zhejiang University. The au-
thors would like to thank the anonymous reviewers for their
constructive suggestions.

References
Bach, F. 2010. Structured sparsity-inducing norms through
submodular functions. In Advances in Neural Information
Processing Systems 23, 118–126.
Badanidiyuru, A.; and Vondrák, J. 2014. Fast algorithms
for maximizing submodular functions. In Proceedings of
the 25th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1497–1514.
Cesa-Bianchi, N.; Freund, Y.; Haussler, D.; Helmbold, D. P.;
Schapire, R. E.; and Warmuth, M. K. 1997. How to use
expert advice. Journal of the ACM, 44(3): 427–485.
Cesa-Bianchi, N.; and Lugosi, G. 2012. Combinatorial ban-
dits. Journal of Computer and System Sciences, 78(5):
1404–1422.
Das, A.; Dasgupta, A.; and Kumar, R. 2012. Selecting di-
verse features via spectral regularization. In Advances in
Neural Information Processing Systems 25, 3026–3034.
Defazio, A.; and Caetano, T. S. 2012. A convex formulation
for learning scale-free networks via submodular relaxation.
In Advances in Neural Information Processing Systems 25,
1250–1258.
Edmonds, J. 1970. Submodular functions, matroids, and cer-
tain polyhedra. In Combinatorial structures and their appli-
cations, 69–87.
El Halabi, M.; and Cevher, V. 2015. A totally unimodular
view of structured sparsity. In Proceedings of the 18th Inter-
national Conference on Artificial Intelligence and Statistics,
223–231.
El Halabi, M.; and Jegelka, S. 2020. Optimal approximation
for unconstrained non-submodular minimization. In Pro-
ceedings of the 37th International Conference on Machine
Learning, 3961–3972.
Flaxman, A. D.; Kalai, A. T.; and McMahan, H. B. 2005.
Online convex optimization in the bandit setting: gradient
descent without a gradient. In Proceedings of the 16th An-
nual ACM-SIAM Symposium on Discrete Algorithms, 385–
394.
Garber, D.; and Kretzu, B. 2020. Improved regret bounds
for projection-free bandit convex optimization. In Proceed-
ings of the 23rd International Conference on Artificial Intel-
ligence and Statistics, 2196–2206.
Gomez-Rodriguez, M.; and Schölkopf, B. 2012. Submodu-
lar inference of diffusion networks from multiple trees. In
Proceedings of the 29th International Conference on Ma-
chine Learning, 489–496.
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