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Abstract

We investigate safe online convex optimization (SOCO),
where each decision must satisfy a set of unknown linear con-
straints. Assuming that the unknown constraints can be ob-
served with a sub-Gaussian noise for each chosen decision,
previous studies have established a high-probability regret
bound of O(T 2/3). However, this assumption may not hold
in many practical scenarios. To address this limitation, in this
paper, we relax the assumption to allow any noise that admits
finite (1+ϵ)-th moments for some ϵ ∈ (0, 1], and propose two
algorithms that enjoy an O(T cϵ) regret bound with high prob-
ability, where T is the time horizon and cϵ = (1+ϵ)/(1+2ϵ).
The key idea of our two algorithms is to respectively utilize
the median-of-means and truncation techniques to achieve ac-
curate estimation under heavy-tailed noises. To the best of our
knowledge, these are the first algorithms designed to handle
SOCO with heavy-tailed observation noises.

Introduction
Online learning (Shalev-Shwartz et al. 2012) has received
ever-increasing attention in recent years, due to its ability
to efficiently handle applications with large-scale streaming
data, such as online spam filtering, portfolio selection, and
online recommendation. It is generally formulated as a re-
peated game between a player and an adversary. In each
round t, the player must select a decision xt from a set
X ⊆ Rd, after which the adversary chooses a loss function
ct(·) : X 7→ R. The player will suffer a loss ct(xt) in each
round and aims to minimize the regret over total T rounds,
which is defined as:

R(T ) =
T∑
t=1

ct(xt)−min
x∈X

T∑
t=1

ct(x). (1)

To achieve this goal, online convex optimization (OCO), a
special case of online learning with convex functions and
convex decision sets, has been extensively studied over the
past decades (Zinkevich 2003; Hazan, Agarwal, and Kale
2007; Shalev-Shwartz and Singer 2007; Hazan and Kale
2012; Wan and Zhang 2021; Wan, Tu, and Zhang 2020; Wan
et al. 2024). It is well-known that several algorithms, such
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as online gradient descent (OGD) (Zinkevich 2003), have
been proposed to achieve an optimal regret bound ofO(

√
T )

(Abernethy et al. 2008).
However, in many real-world applications, beyond the ba-

sic set X , the decisions of the player must also satisfy ad-
ditional safety constraints (Balasubramanian and Ghadimi
2018; Usmanova, Krause, and Kamgarpour 2019a; Ferey-
dounian et al. 2020). For example, in communication net-
works, the maximum allowable radiated power constrains
the transmission rate to ensure human safety (Luong et al.
2019). In robotics applications, the control actions must
satisfy certain safety constraints to ensure the closed-loop
stability of the system (Åström and Murray 2008; Fer-
raguti et al. 2022). Moreover, as in these two examples, the
safety constraints are determined by some system parame-
ters, which are typically unknown to the player, and thus
limit the applicability of standard OCO algorithms.

Motivated by these safety requirements, Chaudhary and
Kalathil (2022) recently consider safe online convex opti-
mization (SOCO), a variant of OCO with a set of unknown
linear safety constraints. Compared with the standard OCO,
the new challenge is that the player needs to estimate the
unknown parameters that characterize the safe set. To this
end, they propose a new algorithm called safe online pro-
jected gradient descent (SO-PGD), which divides the total T
rounds into a safe exploration phase for conservatively esti-
mating the safe set and an exploitation phase for minimizing
the regret under the estimated safety constraints. Under the
assumption that the unknown safety constraints can be ob-
served with sub-Gaussian noises for each chosen decision,
SO-PGD achieves a regret bound of O(T 2/3) while satisfy-
ing the safety constraints in all rounds with high probabil-
ity. However, in many practical scenarios such as extreme
returns in financial market investments (Cont and Bouchaud
2000) and fluctuations in neural oscillations (Roberts, Boon-
stra, and Breakspear 2015), the observation noises are not
sub-Gaussian but heavy-tailed, which undermines the theo-
retical guarantees of SO-PGD.

To address this issue, we investigate SOCO under heavy-
tailed observation noises that admit only finite (1 + ϵ)-th
moments for some ϵ ∈ (0, 1], and develop two novel al-
gorithms that enjoy an O(T cϵ) regret bound where cϵ =
(1 + ϵ)/(1 + 2ϵ), while satisfying the safety constraints in
all rounds with high probability. Specifically, to estimate the
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unknown safety constraints under heavy-tailed noises, our
first algorithm divides the exploration phase of SO-PGD into
several groups, and takes the median of means of the esti-
mations within these groups. For the same goal, our second
algorithm refines SO-PGD by simply truncating the extreme
values of the safety constraints received during the explo-
ration phase. Note that both the median-of-means and trun-
cation techniques have been extensively utilized to address
bandits with heavy-tailed feedback—another paradigm of
online learning (Shao et al. 2018; Lu et al. 2019; Xue et al.
2021, 2023). However, to the best of our knowledge, this is
the first work to demonstrate their benefits in SOCO with
heavy-tailed observation noises.

Related Work
This section reviews the related work on optimization with
safety constraints and learning with heavy-tailed noises.

Optimization with Safety Constraints
Safety has garnered significant interest in the field of op-
timization, encompassing both offline and online settings
(Sui et al. 2015; Amani, Alizadeh, and Thrampoulidis 2019;
Usmanova, Krause, and Kamgarpour 2019a,b; Khezeli and
Bitar 2020; Fereydounian et al. 2020; Chaudhary and
Kalathil 2022). Specifically, in the online setting, previous
studies mainly focus on linear bandits or Gaussian processes
with unknown safety constraints (Sui et al. 2015; Amani, Al-
izadeh, and Thrampoulidis 2019; Khezeli and Bitar 2020).
Their loss functions are either linear or can be modeled
by some regularity assumptions. To address this limitation,
Chaudhary and Kalathil (2022) consider SOCO with un-
known linear safety constraints, where the loss functions can
be arbitrarily chosen. They develop the first algorithm for
SOCO, namely SO-PGD, by extending the classical OGD
method (Zinkevich 2003). If the unknown safety constraints
are observed with sub-Gaussian noises, SO-PGD can safely
enjoy an O(T 2/3) regret bound with high probability. How-
ever, as previously discussed, this assumption may not hold,
because the observation noise could be heavy-tailed in many
practical scenarios.

Learning with Heavy-tailed Noises
Unlike SOCO, the heavy-tailed noise has already received
considerable attention in previous studies on bandits (Liu
and Zhao 2011; Bubeck, Cesa-Bianchi, and Lugosi 2013;
Medina and Yang 2016; Shao et al. 2018; Lu et al. 2019;
Cayci, Eryilmaz, and Srikant 2020; Xue et al. 2021, 2023;
Gou, Yi, and Zhang 2023). The most related works to this
paper are those on the heavy-tailed variant of stochastic lin-
ear bandits (Shao et al. 2018; Xue et al. 2021). Specifically,
Shao et al. (2018) first consider a variant of stochastic lin-
ear bandits (Abbasi-Yadkori, Pál, and Szepesvári 2011) with
heavy-tailed payoffs, in which the player selects an action
xt ∈ X and observes stochastic payoffs as θ⊤∗ xt+ωt, where
θ∗ is an underlying parameter and ωt is a random noise.
Moreover, the noise distribution has finite moments of order
1 + ϵ, where ϵ ∈ (0, 1]. For this problem, Shao et al. (2018)

develop two bandit algorithms by utilizing the median-of-
means and truncation techniques respectively, which can en-
joy nearly optimal regret bounds in terms of T . However,
these regret bounds exhibit a linear dependence on the di-
mension d. Later, Xue et al. (2021) further investigate a
heavy-tailed variant of stochastic linear bandits with finite
arms (Chu et al. 2011), and propose two algorithms with re-
gret bounds that are sublinear to the dimension d and nearly
optimal in terms of T . Nonetheless, the primary techniques
for handling heavy-tailed feedback remain the median-of-
means and truncation. In this paper, we apply these two
techniques to address SOCO with heavy-tailed observation
noises.

Preliminaries
In this section, we first introduce necessary notations and
the problem setting, and then recall the detailed procedures
of the existing SO-PGD algorithm (Chaudhary and Kalathil
2022).

Notations
For any positive integerK, let [K] = {1, 2, . . . ,K}. For any
two integers M1 and M2 satisfying M1 < M2, we express
[M1,M2] = {M1,M1+1, . . . ,M2}. For any random vector
ζ, we define Cov(ζ) = E[ζζ⊤]. For any vector x ∈ Rd, we
use x(i) to denote its i-th element, and use |x|, ⌈x⌉, and
⌊x⌋ to denote the corresponding element-wise operations.
For any two vectors x, y ∈ Rd, we use x = y, x < y,
and x > y to denote the generalized relationships. For any
matrix A, we use Ai to denote its i-th column. If it is also
positive semi-definite, we define ∥x∥A =

√
x⊤Ax. For any

convex set X , we denote ΠX (x) as the projection of any
vector x onto X with respect to the Euclidean norm, i.e.,
ΠX (x) = argminy∈X ∥x− y∥. Moreover, let 1{·} represent
an indicator function and E[X] denote the expectation of X .

Problem Setting
We investigate the SOCO problem with unknown linear con-
straints, which can be viewed as a repeated game between a
player and an adversary. In each round t, the player selects
an action xt from a convex set X that is defined by m linear
safety constraints:

X = {x ∈ Rd : θ⊤x ≤ b},
with an unknown matrix θ ∈ Rd×m and a knowable vec-
tor b ∈ Rm. Then, the adversary selects a convex function
ct(·) : X 7→ R, and the player suffers a loss ct(xt). Simul-
taneously, the player observes the constraint feedback

yt = θ⊤xt + ωt,

where ωt represents a zero-mean random noise. The goal
of SOCO is to select a sequence of actions to minimize the
regret R(T ) defined in (1), while satisfying the safety con-
straints with high probability, i.e.,

P(xt ∈ X , ∀t ∈ [T ]) ≥ (1− δ),
for some δ ∈ (0, 1).

Moreover, following Chaudhary and Kalathil (2022), we
introduce some assumptions.
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Assumption 1. Each loss function ct(x) is convex and pos-
sesses a bounded gradient, i.e.,

max
t∈[T ]

max
x∈X
∥∇ct(x)∥ ≤ G.

Assumption 2. Both the set X and the safety constraint pa-
rameters θ are bounded as specified below.
• X is convex, compact, and satisfies ∥x∥ ≤ L, ∀x ∈ X ;
• θ satisfies maxi∈[m] ∥θi∥ ≤ Lθ.

Assumption 3. There exists a safe baseline action xs ∈
X such that θ⊤xs = bs < b. Moreover, the player
knows xs and bs, which implies that the safety gap ∆s =
mini∈[m](b(i)− bs(i)) is also knowable.

Note that Assumptions 1 and 2 have been commonly uti-
lized in previous studies on OCO. In contrast, Assumption 3
is specific to SOCO, which plays a critical role in enabling
safe exploration during the initial phase of learning, as it is
impossible to satisfy safety constraints without any prior in
the beginning. In the following, we also assume that the ob-
servation noise is heavy-tailed, which is the key difference
between this paper and the previous study of Chaudhary and
Kalathil (2022).
Assumption 4. The noise sequence {ω1, ω2, . . . , ωT } is
heavy-tailed with respect to a filtration {F1, F2, . . . , FT },
which satisfies
• E[ωt|Ft−1] = 0, ∀t ∈ [T ];
• E[|yt|1+ϵ|Ft−1] ≤ q, ∀t ∈ [T ];
• E[|yt − θ⊤xt|1+ϵ|Ft−1] ≤ c, ∀t ∈ [T ];

where ϵ ∈ (0, 1], and q, c ∈ (0,+∞). With slight abuse
of notations, here q and c denote uniform upper bounds for
each dimension of the corresponding vectors.

SO-PGD
The detailed procedures of SO-PGD proposed by Chaudhary
and Kalathil (2022) are outlined in Algorithm 1, where xs
is given by Assumption 3, and other inputs are parameters
of this algorithm. Specifically, this algorithm can be divided
into two phases. In the initial phase, it spends T0 rounds to
make a safe exploration, i.e., playing the following action:

xt = (1− γ)xs + γζt,

at each round t, where xs is a safe baseline, γ ∈ [0, 1) de-
notes the exploration radius, and ζt is a random vector with
zero mean such that

∥ζt∥ ≤ min{1, L}, Cov(ζt) = σ2I, (2)

for some constant σ. According to Assumptions 2 and 3, it
is easy to verify that the above xt satisfies the safety con-
straints if we set γ = ∆s/Lθ (see Lemma 1 of Chaudhary
and Kalathil (2022) for details).

After the exploration phase, SO-PGD has collected the
following information:

XT0
= [x1, x2, . . . , xT0

]⊤, YT0
= [y1, y2, . . . , yT0

]⊤, (3)

and estimates the unknown matrix θ via the ℓ2-regularized
least square, i.e., computing

θ̂ = V −1
T0
X⊤
T0
YT0

, (4)

Algorithm 1: SO-PGD

Input: xs, γ, η, T0, δ, λ, βT0(δ)
1: for t = 1, 2, . . . , T0 do
2: xt = (1− γ)xs + γζt
3: end for
4: VT0

= λI +
∑T0

t=1 xtx
⊤
t

5: θ̂ = V −1
T0
X⊤
T0
YT0

, where XT0
and YT0

are defined in (3)
6: Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂i∥VT0

≤ βT0
(δ)}

7: X̂ = {x ∈ Rd : θ̃⊤i x ≤ b(i), ∀θ̃i ∈ Ci(δ), ∀i ∈ [m]}
8: for t = T0 + 1, T0 + 2, . . . , T do
9: xt+1 ← ΠX̂ (xt − η∇ct(xt))

10: end for
Output: {x1, . . . , xT }

where VT0
= λI +

∑T0

t=1 xtx
⊤
t and the parameter λ > 0

is introduced to make VT0
invertible. Moreover, under the

sub-Gaussian assumption on the observation noise, Chaud-
hary and Kalathil (2022) have shown that θ̂ has a confidence
radius βT0

(δ) such that

P(θi ∈ Ci(δ), ∀i ∈ [m]) ≥ 1− δ, (5)

where Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂i∥VT0
≤ βT0

(δ)}. This
result implies that the i-th column of the true parameter θ is
contained within the set Ci(δ) with probability at least 1−δ.
Thus, they construct a conservative estimation of the safety
constraints as

X̂ = {x ∈ Rd : θ̃⊤i x ≤ b(i), ∀θ̃i ∈ Ci(δ), ∀i ∈ [m]}. (6)

Then, SO-PGD proceeds to the second phase by simply per-
forming OGD (Zinkevich 2003) over the set X̂ , i.e.,

xt+1 ← ΠX̂ (xt − η∇ct(xt))
where η is the learning rate.

Main Results
In this section, we first revisit SO-PGD under heavy-tailed
noises, and then introduce our two algorithms as well as the
corresponding theoretical guarantees.

Revisiting SO-PGD
According to the analysis of Chaudhary and Kalathil (2022),
the regret of SO-PGD can be divided into three parts, in-
cluding the regret of the safe exploration phase, the regret
of the inaccuracy of X̂ , and the regret of OGD during the
exploitation phase. As a result, the new challenge for han-
dling heavy-tailed noises is how to estimate X accurately. A
naive idea is to reuse the least square estimation θ̂ in (4), but
redefine its confidence radius as:

βT0
(δ) = (3dcm/δ)

1
1+ϵ T

1−ϵ
2(1+ϵ)

0 + λ
1
2Lθ. (7)

Note that this change ensures that (5) holds under the heavy-
tailed assumption, and thus X̂ defined in (6) is still a conser-
vative estimation of the safety constraints. In this way, we
show that SO-PGD has the following regret bound even un-
der the heavy-tailed assumption.
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Theorem 1. Suppose Assumptions 1, 2, 3, and 4 hold, and
ζt satisfies (2) for any t ∈ [T0]. If Algorithm 1 is run with
γ = ∆s/Lθ, η = 2L/(G

√
T ), βT0

(δ) in (7), and T0 ≥
8L2

γ2σ2

(
β2
T0

(δ)

(∆s)2 + log
(
d
δ

))
, then with probability at least 1−

2δ, it ensures that xt ∈ X for any t ∈ [T ], and

R(T ) ≤ 2LGT0 + 2LG
√
T +

LG
√
8dβT0(δ)

C(θ, b)
√
γ2σ2

T√
T0
, (8)

where C(θ, b) is a positive constant that depends only on the
matrix θ and vector b.
Remark. Recall that cϵ = (1+ ϵ)/(1+2ϵ). By substituting
(7) and T0 ≈ T cϵ into (8), with probability at least 1 − 2δ,
SO-PGD can achieve the following regret bound:

R(T ) = O
(
δ−

1
1+ϵT

1+ϵ
1+2ϵ

)
, (9)

while satisfying the safety constraints. At first glance, com-
pared with our desired regret bounds, this regret bound has
the same dependence on T . However, we want to emphasize
that it suffers a sublinear dependence on δ−1, and thus does
not hold with high probability.

Our Algorithm Based on Median of Means
To address the above limitation, we first develop a variant of
SO-PGD by utilizing the median of means to improve the es-
timation of the safety constraints. The complete procedures
are summarized in Algorithm 2, which is named SO-PGD
with Median of Means (SOMM).

Note that the main idea of the median of means is to
perform the ℓ2-regularized least square estimation multiple
times and select the median among these estimations. In this
way, we can be less reliant on the accuracy of any single
estimate. Specifically, to perform the median of means dur-
ing the safe exploration phase, we first generate N = T0/k
random actions, i.e., x̂n = (1 − γ)xs + γζn, ∀n ∈ [N ],
and repeat each random action k times to obtain k observa-
tions about the safety constraints, i.e., {y1n, . . . , ykn}. Here,
both k and T0 are adjustable parameters, and we assume that
N = T0/k is an integer without loss of generality. Then, we
can calculate VN = λI+

∑N
n=1 x̂nx̂

⊤
n and conduct the least

square estimation for each sequence of observations to get k
estimators, i.e.,

[θ̂1,j , θ̂2,j , . . . , θ̂m,j ] = V −1
N X⊤

NY
j
N ,

for each j ∈ [k], where

XN = [x̂1, x̂2, . . . , x̂N ]⊤, Y jN = [yj1, y
j
2, . . . , y

j
N ]⊤. (10)

Moreover, we calculate the distance between these estima-
tors, denoted as “means”: ∥θ̂i,j − θ̂i,s∥VN

, and obtain the
median of means ri,j for any i ∈ [m] and j ∈ [k].

Now, we are ready to refine the set Ci(δ) used in SO-
PGD and the corresponding confidence radius. Let i∗ =
argminj∈[k] ri,j denote the minimum of the median distance
for each i ∈ [m]. To be precise, we can prove that (5) still
holds under the heavy-tailed assumption by using a suitable
k = ⌈24 log(m/δ)⌉ and redefining

Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂i,i∗∥VN
≤ βN (δ)}, (11)

Algorithm 2: SOMM

Input: xs, γ, η, T0, δ, λ
1: Initialization: k = ⌈24 log(m/δ)⌉, N = T0/k
2: for n = 1, 2, . . . , N do
3: x̂n = (1− γ)xs + γζn, τ = 1
4: for t = (n− 1) ∗ k + 1, (n− 1) ∗ k + 2, . . . , nk do
5: Play xt = x̂n and observe yτn = yt
6: Update τ = τ + 1
7: end for
8: end for
9: Compute VN = λI +

∑N
t=1 xtx

⊤
t and k estimators:

[θ̂1,j , θ̂2,j , . . . , θ̂m,j ] = V −1
N X⊤

NY
j
N , ∀j ∈ [k],

where XN and Y jN are defined in (10)
10: for i = 1, 2, . . . ,m do
11: for j = 1, 2, . . . , k do
12: ri,j = median of {∥θ̂i,j−θ̂i,s∥VN

: s ∈ [k]\{j}}
13: end for
14: end for
15: i∗ = argminj∈[k] ri,j for all i ∈ [m]

16: βN (δ) = 3((12dc)
1

1+ϵN
1−ϵ

2(1+ϵ) + λ
1
2Lθ)

17: Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂i,i∗∥VN
≤ βN (δ)}

18: X̂ = {x ∈ Rd : θ̃⊤i x ≤ b(i), ∀θ̃i ∈ Ci(δ), ∀i ∈ [m]}
19: for t = T0 + 1, T0 + 2, . . . , T do
20: xt+1 = ΠX̂ (xt − η∇ct(xt))
21: end for
Output: {x1, ..., xT }

where βN (δ) = 3((12dc)
1

1+ϵN
1−ϵ

2(1+ϵ) + λ
1
2Lθ), and Lθ, ϵ, c

are given by Assumptions 2 and 4. Compared with the confi-
dence radius in (7), here βN (δ) has a tighter dependence on
δ, which is critical for achieving the desired high-probability
regret bound.

Next, following SO-PGD, we only need to construct X̂
based on Ci(δ) defined in (11), and perform OGD (Zinke-
vich 2003) over X̂ during the exploitation phase. By refining
the original analysis of SO-PGD, we establish the following
theoretical guarantee for our SOMM.
Theorem 2. Suppose Assumptions 1, 2, 3, and 4 hold,
and ζn satisfies (2) for any n ∈ [N ]. If Algorithm 2
is run with γ = ∆s/Lθ, η = 2L/(G

√
T ), and N ≥

8L2

γ2σ2

(
β2
N (δ)

(∆s)2 + log
(
d
δ

))
, then with probability at least 1 −

2δ, it ensures that xt ∈ X for any t ∈ [T ], and

R(T ) = O
(
T ·N

−ϵ
1+ϵ + T0 +

√
T
)
. (12)

Remark. By substituting T0 ≈ T cϵ , N = T0/k, and k =
⌈24 log(m/δ)⌉ into (12), with probability at least 1−2δ, our
SOMM can enjoy the following regret bound:

R(T ) = O
(
(log (1/δ))

1
1+ϵ T

1+ϵ
1+2ϵ

)
, (13)

while satisfying the safety constraints. Compared to the re-
gret bound in (9), it reduces the sublinear dependence on
δ−1 to a polylogarithmic dependence, and thus can hold with
high probability.
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Our Algorithm Based on Truncated Mean
Furthermore, inspired by previous studies on heavy-tailed
bandits (Shao et al. 2018; Xue et al. 2021), we also develop
a variant of SO-PGD based on the truncated means. The de-
tailed procedures are outlined in Algorithm 3, and the algo-
rithm is named SO-PGD with Truncated Means (SOTM).

Similar to SOMM, we only improve the safe exploration
phase of SO-PGD. Moreover, compared to SOMM, a critical
point of SOTM is to truncate the observed information dur-
ing the exploration phase delicately. Intuitively, the trunca-
tion can filter the extreme value of heavy-tailed noises while
keeping useful information for estimating the unknown pa-
rameters. To be precise, we introduce a truncation criterion
q̂, and set it as

q̂ = (log (2dm/δ) /q)
− 1

1+ϵ T
1−ϵ

2(1+ϵ)

0 (14)
where q is given by Assumption 4. Recall that XT0

and YT0

defined in (3) have been collected. For each constraint i ∈
[m] and dimension j ∈ [d], SOTM individually truncates the
collected information as
Y †
i,j = [y1(i)1|uj(1)y1(i)|≤q̂; . . . ; yT0

(i)1|uj(T0)yT0
(i)|≤q̂],

(15)
where [u1, . . . , ud]

⊤ = V
−1/2
T0

X⊤
T0

and VT0
follows the def-

inition in Algorithm 1.
Then, for the i-th column of the unknown matrix θ, SOTM

computes an estimator as

θ̂†i = V
−1/2
T0

[u⊤1 Y
†
i,1; . . . ;u

⊤
d Y

†
i,d].

Under the heavy-tailed assumption, we can prove that (5)
also holds with the following set:

Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂†i ∥VT0
≤ βT0(δ)}

and the confidence radius of

βT0
(δ) = 4

√
dq

1
1+ϵ (log (2dm/δ))

ϵ
1+ϵ T

1−ϵ
2(1+ϵ)

0 + λ
1
2Lθ.

(16)
As a result, we continue to construct a conservative estima-
tion X̂ as in SO-PGD and SOMM, and then simply perform
OGD (Zinkevich 2003) over X̂ for the exploitation phase.

By incorporating the property of the redefined Ci(δ) into
the original analysis of SO-PGD, we establish the following
theoretical guarantee for our SOTM.
Theorem 3. Suppose Assumptions 1, 2, 3, and 4 hold,
and ζt satisfies (2) for any t ∈ [T0]. If Algorithm 3 is
run with γ = ∆s/Lθ, η = 2L/(G

√
T ), and T0 ≥

8L2

γ2σ2

(
β2
T0

(δ)

(∆s)2 + log
(
d
δ

))
, then with probability at least 1−

2δ, it ensures that xt ∈ X for any t ∈ [T ], and

R(T ) = O

(
T · T

−ϵ
1+ϵ

0 (log (1/δ))
ϵ

1+ϵ + T0

)
. (17)

Remark. Similar to SOMM, by substituting T0 ≈ T cϵ into
(17), with probability at least 1 − 2δ, our SOTM can enjoy
the same regret bound as in (13), while satisfying the safety
constraints. However, we want to emphasize that SOTM
only needs to know the constant q in Assumption 4, rather
than the constant c required by SOMM. Moreover, it is worth
noting that the requirements of these algorithms on the min-
imum T0 are also slightly different.

Algorithm 3: SOTM

Input: xs, γ, η, T0, δ, λ
1: for t = 1, 2, . . . , T0 do
2: xt = (1− γ)xs + γζt
3: end for
4: q̂ = (log (2dm/δ) /q)

− 1
1+ϵ T

1−ϵ
2(1+ϵ)

0

5: VT0
= λI +

∑T0

t=1 xtx
⊤
t

6: [u1, . . . , ud]
⊤ = V

−1/2
T0

X⊤
T0

7: Compute Y †
i,j as in (15) for any i ∈ [m] and j ∈ [d]

8: θ̂†i = V
−1/2
T0

[u⊤1 Y
†
i,1; . . . ;u

⊤
d Y

†
i,d], ∀i ∈ [m]

9: Compute βT0
(δ) as in (16)

10: Ci(δ) = {θ̃i ∈ Rd : ∥θ̃i − θ̂†i ∥VT0
≤ βT0

(δ)}
11: X̂ = {x ∈ Rd : θ̃⊤i x ≤ b(i), ∀θ̃i ∈ Ci(δ), ∀i ∈ [m]}
12: for t = T0 + 1, T0 + 2, . . . , T do
13: xt+1 = ΠX̂ (xt − η∇ct(xt))
14: end for
Output: {x1, . . . , xT }

Analysis
In this section, we prove Theorems 1, 2, and 3. The main
novelty of our proofs lies in identifying an appropriate
method for measuring the confidence interval of the esti-
mated safety constraints under the heavy-tailed assumption.

Proof of Theorem 1
The safe set is defined by m linear constraints. Here, we
examine a more stringent scenario, in which each constraint
in the safe set is satisfied with probability at least 1 − δ

m .
Inspired by Shao et al. (2018), we decompose XT0

as

XT0
= UΣT0

V ⊤,

where U is a T0 × d matrix with orthonormal columns, V is
a d× d unitary matrix, and ΣT0 is an d× d diagonal matrix
with non-negative entries. Let u⊤j denote the j-th row of

V
−1/2
T0

X⊤
T0

= V (Σ2
T0

+ λI)−
1
2ΣT0

U⊤. (18)

Thus, we have ∥uj∥ ≤ 1, and can bound the gap between
the estimation θ̂i and θi as below

∥θ̂i − θi∥VT0
= ∥V −1

T0
X⊤
T0
YT0,i − θi∥VT0

=∥V −1
T0
X⊤
T0
YT0,i − (V −1

T0
(X⊤

T0
XT0 + λI))θi∥VT0

=∥V −1
T0
X⊤
T0
(YT0,i −XT0

θi)− λV −1
T0
θi∥VT0

≤∥V −1/2
T0

X⊤
T0
(YT0,i −XT0

θi)∥+ λ∥θi∥V −1
T0

≤

√√√√ d∑
j=1

(
u⊤j (YT0,i −XT0θi)

)2
+ λ1/2Lθ

(19)

where the last inequality is due to (18) and Assumption 2.
To bound the first term of the right side of (19), we define

ψj,τ = uj(τ)(yτ (i)− x⊤τ θi), ϕj,τ = ψj,τ1|ψj,τ |<ξ,
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for some constant ξ > 0. It is not hard to verify that

P

 d∑
j=1

(
u⊤j (YT0,i −XT0

θi)
)2
> ξ2


=P

 d∑
j=1

(
T0∑
τ=1

ψj,τ

)2

> ξ2


≤P (∃j, τ, |ψj,τ | > ξ) + P

 d∑
j=1

(
T0∑
τ=1

ϕj,τ

)2

> ξ2


≤2dcT0

1−ϵ
2

ξ1+ϵ
+ d

(
cT0

1−ϵ
2

ξ1+ϵ

)2

(20)
where the second inequality follows from (21) in Shao et al.
(2018), and the last inequality follows from (23) and (24) in
Shao et al. (2018) and depends on Assumption 4.

Then, to ensure that the true value θi lies in the set Ci(δ)
estimated via θ̂i with probability at least 1− δ

m , we need to
find a constant ξ satisfying

2dcT0
1−ϵ
2

ξ1+ϵ
+ d

(
cT0

1−ϵ
2

ξ1+ϵ

)2

≤ δ

m
.

Notice that the above inequality can be derived from

T0
1−ϵ
2 c

ξ1+ϵ
+ 1 ≤

√
1 +

δ

md
. (21)

Moreover, due to the fact that δ < 1 and md ≥ 1, (21) can
be derived from

T0
1−ϵ
2 c

ξ1+ϵ
≤ δ

3dm
,

which implies that we can set

ξ =

(
3dcm

δ

) 1
1+ϵ

T0
1−ϵ

2(1+ϵ) .

Therefore, by substituting the above ξ into (20) and combin-
ing with (19), with a probability at least 1− δ/m, we have

∥θ̂i − θi∥VT0
≤
(
3dcm

δ

) 1
1+ϵ

T
1−ϵ

2(1+ϵ)

0 + λ1/2Lθ = βT0
(δ).

(22)
Then, we can derive (5) by using the union bound. From this
result, it is easy to verify that X̂ constructed in Algorithm 1
satisfies

P(X̂ ⊆ X ) ≥ 1− δ.
Note that Algorithm 1 ensures that xt ∈ X for any t ∈ [T0]

and xt ∈ X̂ for any t ∈ [T0 + 1, T ]. By combining with
the above result, with a probability at least 1 − δ, we have
xt ∈ X for any t ∈ [T ].

Now, we are ready to prove the regret bound for Algo-
rithm 1. According to the two phases used in Algorithm 1,
the regret can be rewritten as

R(T ) =

T0∑
t=1

(ct(xt)− ct(x∗)) +
T∑

t=T0+1

(ct(xt)− ct(x∗))

where x∗ ∈ argminx∈X
∑T
t=1 ct(x).

Under Assumptions 1 and 2, we can bound the first term
as follows

T0∑
t=1

ct(xt)− ct(x∗) ≤
T0∑
t=1

G∥xt − x∗∥ ≤ 2LGT0. (23)

Next, we relax the second term as

T∑
t=T0+1

(ct(xt)− ct(x∗))

=
T∑

t=T0+1

(ct(xt)− ct(x̂∗)) +
T∑

t=T0+1

(ct(x̂
∗)− ct(x∗)) ,

where x̂∗ ∈ argminx∈X̂
∑T
t=1 ct(x).

If θi ∈ Ci(δ), ∀i ∈ [m], by adopting the standard OGD
analysis (Hazan 2016) with Assumptions 1 and 2, we have

T∑
t=T0+1

(ct(xt)− ct(x̂∗)) ≤ 2LGT 1/2. (24)

Then, according to the proof of Proposition 2 in Chaudhary
and Kalathil (2022), if θi ∈ Ci(δ), ∀i ∈ [m], ζt satisfies (2)

for any t ∈ [T0], and T0 ≥ 8L2

γ2σ2

(
β2
T0

(δ)

(∆s)2 + log
(
d
δ

))
, with

probability at least 1− δ, we have

T∑
t=T0+1

(ct(x̂
∗)− ct(x∗)) ≤

LG
√
8dβT0

(δ)

C(θ, b)
√
γ2σ2

T√
T0
. (25)

By combining (5), (23), (24), (25), with probability at least
1− 2δ, we finally get the following regret bound:

R(T ) ≤ 2LGT0 + 2LG
√
T +

LG
√
8dβT0(δ)

C(θ, b)
√
γ2σ2

T√
T0
. (26)

Proof of Theorem 2
We start this proof by introducing a lemma from Shao et al.
(2018), which will be used to determine a proper confidence
radius of the median estimation.

Lemma 1. (Lemma 3 of Shao et al. (2018)) Recall θ̂i,j , θi,i∗
and VN in Algorithm 2. If there exists a ξ > 0, such that

P
(
∥θ̂i,j − θi∥VN

≤ ξ
)
≥ 3

4

holds for all j ∈ [k], then it holds that

∥θ̂i,i∗ − θi∥VN
≤ 3ξ

with probability at least 1− e− k
24 .

Note that θ̂i,j in Algorithm 2 is equivalent to θ̂i generated
by Algorithm 1 with T0 = N . Therefore, by combining (22)
with δ

m = 1
4 and T0 = N , it is easy to verify that we have

P
(
∥θ̂i,j − θi∥VN

≤ ξ
)
≥ 3

4
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for ξ = (12dc)
1

1+ϵN
1−ϵ

2(1+ϵ) +λ
1
2Lθ. By combining the above

result with Lemma 1 and setting k = ⌈24 log(m/δ)⌉, with
probability at least 1− δ, we have

∥θ̂i,i∗ − θi∥VN
≤ 3ξ = βN (δ), ∀i ∈ [m].

In other words, we have proved that (5) holds with Ci(δ)
defined in Algorithm 2.

Next, following the proof of Theorem 1, it is easy to verify
that Algorithm 2 ensures xt ∈ X for any t ∈ [T ] with a
probability at least 1− δ. Moreover, similar to (26), it is not
hard to verify that if ζn satisfies (2) for any n ∈ [N ], and
N ≥ 8L2

γ2σ2

(
β2
N (δ)

(∆s)2 + log
(
d
δ

))
, with a probability at least

1− 2δ, Algorithm 2 has

R(T ) ≤ 2LGT0 + 2LGT 1/2 +
LG
√
8dβN (δ)

C(θ, b)
√
γ2σ2

T√
N
,

which can be further simplified as

R(T ) = O
(
T0 +

√
T + T ·N

−ϵ
1+ϵ

)
.

Proof of Theorem 3
We start this proof by demonstrating that the confidence ra-
dius defined in (16) is appropriate for Ci(δ) defined in Al-
gorithm 3. First, similar to (19) in the proof of Theorem 1,
we have

∥θ̂†i − θi∥VT0
≤

√√√√ d∑
j=1

(
u⊤j (Y

†
i,j −XT0θi)

)2
+ λ

1
2Lθ.

(27)
To bound the first term on the right side of above inequality,
we notice that

u⊤j (Y
†
i,j −XT0

θi) =

T0∑
τ=1

uj(τ)(Y
†
i,j(τ)− E[yτ (i)])

=

T0∑
τ=1

uj(τ)
(
Y †
i,j(τ)− E[Y †

i,j(τ)]
)

−
T0∑
τ=1

uj(τ)E[yτ (i)1|uj(τ)yτ (i)|>q̂]

(28)
where the last equality is due to (15).

Then, based on Bernstein’s inequality (Seldin et al. 2012),
with probability at least 1− δ

md , we have∣∣∣∣∣
T0∑
τ=1

uj(τ)
(
Y †
i,j(τ)− E[Y †

i,j(τ)]
)∣∣∣∣∣ ≤ 2q̂ log

(
2dm

δ

)

+
1

2q̂

T0∑
τ=1

E

[
uj(τ)

2
(
Y †
i,j(τ)− E[Y †

i,j(τ)]
)2]

︸ ︷︷ ︸
:=A

.

(29)
Following (35) in Shao et al. (2018), we can utilize Assump-
tion 4 to derive an upper bound on the term A:

A ≤
∑T0

τ=1 |uj(τ)|1+ϵq
2q̂ϵ

(30)

and an upper bound on the last term on the right side of (28):
T0∑
τ=1

∣∣uj(τ)E[yτ (i)1|uj(τ)yτ (i)|>q̂]
∣∣ ≤ ∑T0

τ=1 |uj(τ)|1+ϵq
q̂ϵ

.

(31)
Then, by combining (28) with (29), (30) and (31), with prob-
ability at least 1− δ

md , we have

u⊤j (Y
†
i,j −XT0

θi)

≤
∑T0

τ=1 |uj(τ)|1+ϵq
2q̂ϵ

+

∑T0

τ=1 |uj(τ)|1+ϵq
q̂ϵ

+ 2q̂ log

(
2dm

δ

)
≤4q

1
1+ϵ

(
log

(
2dm

δ

)) ϵ
1+ϵ

T
1−ϵ

2(1+ϵ)

0

where the last inequality is due to the definition of q̂ in (14)

and the fact
∑T0

τ=1 |uj(τ)|1+ϵ ≤ T
1−ϵ
2

0 .
By further combining the above result with (27), we can

verify that (5) holds with Ci(δ) defined in Algorithm 3. Fol-
lowing the proof of Theorem 1, it is easy to verify that Al-
gorithm 3 ensures xt ∈ X for any t ∈ [T ] with a probability
at least 1− δ. Finally, if ζt satisfies (2) for any t ∈ [T0], and

T0 ≥ 8L2

γ2σ2

(
β2
T0

(δ)

(∆s)2 + log
(
d
δ

))
, it is not hard to verify that

(26) also holds with probability at least 1−2δ, which can be
further simplified as

R(T ) = O

(
T0 +

√
T + T · T

−ϵ
1+ϵ

0 (log (1/δ))
ϵ

1+ϵ

)
due to the definition of βT0

(δ) in (16).

Conclusion and Future Work
In this work, we study safe online convex optimization with
heavy-tailed observation noises. We first revisit SO-PGD—
an existing algorithm developed for sub-Gaussian noises,
but fail to derive a high-probability regret bound under the
heavy-tailed assumption. To tackle this limitation, we pro-
pose two heavy-tailed variants of SO-PGD, namely SOMM
and SOTM, by combining it with the median-of-means and
truncation techniques, respectively. Both of them can enjoy a
regret bound of O(T cϵ) while satisfying the unknown safety
constraints with high probability. One potential limitation of
our algorithms is that some prior information on the heavy-
tailed noise is required. Note that recent advances in heavy-
tailed bandits (Huang, Da, and Huang 2022; Genalti et al.
2024) have proposed adaptive algorithms for the challeng-
ing case without prior information. Thus, an open problem
is whether their techniques can be applied to make our algo-
rithms adaptive.
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proved algorithms for linear stochastic bandits. In Advances
in neural information processing systems 24, 2312–2320.
Abernethy, J.; Bartlett, P.; Rakhlin, A.; and Tewari, A. 2008.
Optimal strategies and minimax lower bounds for online
convex games. In Proceedings of the 19th Annual Confer-
ence on Computational Learning Theory, 415–429.
Amani, S.; Alizadeh, M.; and Thrampoulidis, C. 2019.
Linear stochastic bandits under safety constraints. In
Advances in Neural Information Processing Systems 32,
12544–12554.
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