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Abstract
We investigate the problem of distributed online convex op-
timization with complicated constraints, in which the pro-
jection operation could be the computational bottleneck. To
avoid projections, distributed online projection-free methods
have been proposed and attain an O(T 3/4) regret bound
for general convex losses. However, they cannot utilize the
smoothness condition, which has been exploited in the cen-
tralized setting to improve the regret. In this paper, we pro-
pose a new distributed online projection-free method with
a tighter regret bound of O(T 2/3) for smooth and convex
losses. Specifically, we first provide a distributed extension
of Follow-the-Perturbed-Leader so that the smoothness can
be utilized in the distributed setting. Then, we reduce the
computational cost via sampling and blocking techniques. In
this way, our method only needs to solve one linear optimiza-
tion per round on average. Finally, we conduct experiments
on benchmark datasets to verify the effectiveness of our pro-
posed method.

Introduction
Distributed online convex optimization (D-OCO) has been a
popular research topic due to its powerful capability in dis-
tributed online decision making, such as distributed track-
ing in sensor networks (Li et al. 2002; Shahrampour and
Jadbabaie 2018) and distributed energy management (Bao
et al. 2018; Lesage-Landry and Callaway 2020). In general,
D-OCO can be viewed as an iterative game between an ad-
versary and a group of local learners connected via a dis-
tributed network, which is defined by an undirected graph
G = (V,E) with the vertex set V = {1, · · · , n} and the
edge set E ⊂ V ×V . At round t, learner i ∈ V chooses a de-
cision xt,i from a convex set K ⊆ Rd. After that, the adver-
sary reveals a convex local loss function ft,i(·) : K → R and
the local learner i suffers a loss ft,i(xt,i). The main chal-
lenge in D-OCO is that each learner i can only access local
information (e.g., losses and gradients of itself) but needs to
minimize the global loss:

ft(x) =
n∑

j=1

ft,j(x), (1)
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which is the sum of all local loss functions at round t. Mini-
mizing the global loss is equivalent to minimizing the global
regret, which is defined as the difference between cumula-
tive global loss of local learner i and that of the best fixed
decision in hindsight:

Regreti =
T∑

t=1

ft(xt,i)−min
x∈K

T∑
t=1

ft(x). (2)

When there is only one learner in the network, this chal-
lenge can be handled by a classical online learning frame-
work: centralized online convex optimization (OCO). The
global loss ft in centralized OCO reduces to the local loss
for the single learner. Correspondingly, the global regret de-
generates to that defined by the local loss:

Regret =
T∑

t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x), (3)

where xt is the action of the single learner at round t. In
centralized OCO, various methods have been proposed to
achieve the optimal regret bound, such as Online Gradient
Descent (OGD) (Zinkevich 2003; Hazan, Agarwal, and Kale
2007) and Online Dual Averaging (ODA) (Nesterov 2009;
Bubeck 2015). In the past decade, these methods in cen-
tralized OCO have been extended to the distributed setting,
e.g., Distributed Online Gradient Descent (D-OGD) (Ram,
Nedich, and Veeravalli 2010; Yan et al. 2013; Yuan, Ling,
and Yin 2016) and Distributed Online Dual Averaging (D-
ODA) (Hosseini, Chapman, and Mesbahi 2013; Lee, Nedić,
and Raginsky 2016).

A main operation in these D-OCO methods is projection,
which pulls an infeasible point back into the convex domain
K. In general, the infeasible point is projected to the nearest
one in domain K under ℓ2 distance (Hazan and Kale 2012).
However, when constraints are complicated, such an oper-
ation can be quite time-consuming and even impossible for
the local learners with light computation capability. To han-
dle this issue, recent studies (Zhang et al. 2017; Wan, Tu, and
Zhang 2020; Wan et al. 2022) proposed several distributed
online projection-free methods, which replace the projec-
tion operation with a linear optimization step. Different from
the projection operation, the linear optimization step could
be more efficient for certain complicated domains. More-
over, existing distributed online projection-free methods can
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attain an O(T 3/4) regret bound for general convex losses
(Zhang et al. 2017; Wan, Tu, and Zhang 2020) and a tighter
Õ(T 2/3) regret bound for strongly convex losses (Wan et al.
2022).

Besides strong convexity, exploiting the smoothness con-
dition of loss functions is another common approach to pro-
mote the regret bound (Srebro, Sridharan, and Tewari 2010;
Orabona, Cesa-Bianchi, and Gentile 2012). A recent work
(Hazan and Minasyan 2020) proposed the Online Smooth
Projection Free algorithm (OSPF) to improve the regret of
projection-free methods for smooth losses in centralized
OCO. However, in the distributed setting, none of exist-
ing research considers the smoothness of loss functions.
Inspired by OSPF, we propose Distributed Online Smooth
Projection-Free Algorithm (D-OSPA) with a tighter regret
bound of O(T 2/3) for smooth and convex losses in D-OCO.
The main technique contribution of our work is extend-
ing Follow-the-Perturbed-Leader (Kalai and Vempala 2005;
Hazan 2016) to the distributed setting. Furthermore, to make
the distributed extension tractable, we apply sampling and
blocking techniques and hence, obtain our final method D-
OSPA. Specifically, we first estimate the expectation oper-
ation in the distributed extension by computing the average
of m i.i.d. samples. Then, we group k rounds into one to re-
duce the update frequency and therefore, decrease the com-
putational cost. Overall, in D-OSPA, there are m/k linear
optimizations per round on average. When m = k, D-OSPA
only needs to solve one linear optimization in each round
averagely. We summarize the contributions of this work as
follows:

• We first propose Distributed Follow-the-Perturbed-
Leader (D-FPL), which achieves the optimal regret of
O(

√
T ) in D-OCO. To the best of our knowledge, D-FPL

is the first distributed variant of Follow-the-Perturbed-
Leader method.

• Based on D-FPL, we present Distributed Online Smooth
Projection-Free Algorithm (D-OSPA) with one linear op-
timization per round on average. And we prove that for
smooth and convex loss functions, D-OSPA ensures an
O(T 2/3) regret bound.

• Even if loss functions are not smooth, we show that D-
OSPA still obtains an O(T 3/4) regret guarantee, which
matches the result of previous work (Zhang et al. 2017).

Related Work
In this section, we briefly overview existing projection-free
methods in centralized online convex optimization (OCO)
and distributed online convex optimization (D-OCO).

Projection-Free Methods in Centralized OCO
Hazan and Kale (2012) proposed the first online projection-
free method named Online Frank-Wolfe (OFW), which is
an online extension of Frank-Wolfe Algorithm (Frank and
Wolfe 1956), and ensures an O(T 3/4) regret for general con-
vex loss functions. The basic idea is to decrease the compu-
tational cost of the projection operation by replacing it with

the following linear optimization steps
vt = argmin

x∈K
⟨∇Ft(xt),x⟩

xt+1 = xt + st(vt − xt),
(4)

where Ft(x) = η
∑t−1

r=1 ∇fr(xr)
⊤x + ∥x − x1∥22 is a sur-

rogate loss function and η, st are two parameters. Based on
OFW, several methods are proposed with improved bounds
by using additional conditions such as the strong convexity
of losses (Wan and Zhang 2021; Kretzu and Garber 2021).

Recently, Hazan and Minasyan (2020) proposed OSPF,
which promotes the regret bound from O(T 3/4) to O(T 2/3)
for smooth and convex losses. OSPF is based on a very clas-
sical method, Follow-the-Perturbed-Leader (Kalai and Vem-
pala 2005; Hazan 2016) which computes the expected action
according to the random variable v sampled from an unit
ball B:

xt = Ev∼B

[
argmax

x∈K

〈
−

t−1∑
r=1

∇fr(xr) +
1

η
· v,x

〉]
,

(5)
where

∑t−1
r=1 ∇fr(xr) is the sum of historical gradients and

η is the perturbation parameter. Note that it is difficult to
compute a closed form of the expected action in general.
Therefore, OSPF utilizes sampling and blocking techniques
to enhance the computational efficiency (Cohen and Hazan
2015; Garber and Kretzu 2020).

Furthermore, we notice that recent work (Garber and
Hazan 2016; Levy and Krause 2019; Molinaro 2020;
Mhammedi 2022; Garber and Kretzu 2022) improved the
regret bound of projection-free methods by exploiting some
special conditions of the domain set K.

Projection-Free Methods in D-OCO
Due to the distributed connections, each local learner
i can only communicate with its neighbors Ni =
{j ∈ V |(i, j) ∈ E}. Following previous studies (Hosseini,
Chapman, and Mesbahi 2013; Zhang et al. 2017), we in-
troduce a non-negative weight matrix P ∈ Rn×n to model
the communication between local learners. By exploiting the
communication matrix P , learner i can update actions based
on not only its own local information (e.g., losses and gradi-
ents) but also that of its neighbors.

More specifically, for each local learner i, we introduce
a dual variable zt,i as an approximation for accumulative
global gradients until round t and update zt,i according to

zt,i =
∑
j∈Ni

Pijzt−1,j +∇ft,i(xt,i), (6)

where Pij is the weight of the dual variable that learner i
receives from learner j and ∇ft,i(xt,i) is the local gradient
of learner i at round t. A common extension for methods in
centralized OCO (e.g., ODA and OFW) to the distributed
setting is to replace the sum of historical local gradients∑t−1

r=1 ∇fr,i(xr,i) with zt−1,i and update zt−1,i to zt,i ac-
cording to (6).

In this way, Zhang et al. (2017) proposed a distributed
projection-free method, named Distributed Online Condi-
tional Gradient (D-OCG). However, D-OCG requires each
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learner to share local gradients with their neighbors every
round, which leads to an O(T ) communication complexity.
To address this issue, Wan, Tu, and Zhang (2020) introduced
Distributed Block Online Conditional Gradient (D-BOCG),
which reduces the communication complexity to O(

√
T )

and still ensures the same regret. The main idea of D-BOCG
is the blocking technique (Garber and Kretzu 2020), which
divides the whole rounds into equally-sized blocks and only
updates local learners at the beginning of each block.

Main Results
In this section, we first introduce necessary preliminaries,
including basic assumptions and definitions, then present D-
OSPA and its theoretical guarantees.

Preliminaries
Following previous studies in centralized OCO (Hazan
2016) and D-OCO (Hosseini, Chapman, and Mesbahi 2013),
we introduce three foundational assumptions.
Assumption 1. The convex decision set K ⊂ Rd is convex
and compact. Furthermore, the norm of any points in the set
is upper bounded by D, i.e.,

∀x ∈ K, ∥x∥2 ≤ D. (7)

Assumption 2. At each round t, the local loss function
ft,i(x) is G-Lipschitz over K for any learner i, i.e.,

∀x,y ∈ K, |ft,i(x)− ft,i(y)| ≤ G∥x− y∥2. (8)

Assumption 3. In the distributed network, learners com-
municate with neighbors by a non-negative, symmetric and
doubly stochastic matrix P ∈ Rn×n, which guarantees
• ∀ 0 ≤ i, j ≤ n, 0 ≤ Pij ≤ 1;
• ∀ 0 ≤ i, j ≤ n, Pij > 0 if and only if (i, j) ∈ E;
• ∀ 0 ≤ i ≤ n,

∑n
j=1 Pij =

∑
j∈Ni

Pij = 1;
• ∀ 0 ≤ j ≤ n,

∑n
i=1 Pij =

∑
i∈Nj

Pij = 1.

In the following, we denote σ2(P ) as the second largest
eigenvalue of the matrix P .
In this work, we assume that the adversary is oblivious, i.e.,
all local loss functions are chosen in advance and are inde-
pendent of the actions played by local learners.

Then, we recall standard definitions of convexity, smooth-
ness (Boyd and Vandenberghe 2004) and linear optimization
oracle (Hazan and Minasyan 2020).
Definition 1. Let f(x) : K → R be a function over K. It is
called convex over K if for all x ∈ K,y ∈ K

f(y) ≥ f(x) +∇f(x)⊤(y − x). (9)

Definition 2. Let f(x) : K → R be a function over K. It is
called β-smooth over K if for all x ∈ K,y ∈ K

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
β

2
∥y − x∥22. (10)

Definition 3. Let OK(·) be a linear optimization oracle over
K and its corresponding linear value oracle is denoted as
MK(·). Then, for any y ∈ Rd, we have

OK(y) = argmax
x∈K

⟨y,x⟩ , MK(y) = max
x∈K

⟨y,x⟩ . (11)

Algorithm 1: Distributed Follow-the-Perturbed-Leader (D-
FPL)
Input: Number of rounds T , communication matrix P , local
learner set V , perturbation parameter η, linear optimization
oracle OK(·)
Initialization: Set {z0,i = 0|i ∈ V }

1: for t = 1 to T do
2: for i ∈ V do
3: compute xt,i according to (12)
4: play xt,i, observe ft,i, denote ∇t,i = ∇ft,i (xt,i)
5: update zt,i according to (6)
6: end for
7: end for

Remark 1. We solve a linear optimization by querying the
linear optimization oracle OK(·). Notice that MK(y) =
⟨y,OK(y)⟩ and ∇MK(y) = OK(y).

In the following, for simplicity, we denote al:k as the
sum al:k =

∑k
i=l ai and ∇t,i as the local gradient ∇t,i =

∇ft,i(xt,i) of learner i at round t.

Methods
Our method is inspired by Hazan and Minasyan (2020),
who proposed a projection-free method based on Follow-
the-Perturbed-Leader (FPL) with an improved regret for
smooth and convex losses in centralized OCO. To exploit
the smoothness of losses in the distributed setting, we first
present a distributed extension of FPL. Then, we introduce
sampling and blocking techniques to reduce the computa-
tional cost. Eventually, we obtain our final method, named
Distributed Online Smooth Projection-Free Algorithm (D-
OSPA).

Distributed Follow-the-Perturbed-Leader
The classical FPL method can not be used in D-OCO di-
rectly since local learners can only access local gradients but
need to minimize global losses. Following previous studies
in D-OCO (Hosseini, Chapman, and Mesbahi 2013; Zhang
et al. 2017), we introduce a dual variable zt,i for each learner
i to approximate the historical accumulative global gradi-
ents. At round t, learner i chooses action xt,i according to

xt,i = Ev∼B

[
OK

(
−zt−1,i +

1

η
· v
)]

(12)

and updates zt,i by (6). By replacing (5) in FPL with (12)
and maintaining the dual variable according to (6), we ob-
tain the distributed extension of FPL, termed as Distributed
Follow-the-Perturbed-Leader (D-FPL). The complete proce-
dures are summarized in Algorithm 1, of which the regret
bound is stated as following.

Theorem 1. Let L = 1
2 + 3

√
n

1−σ2(P ) . Under Assumptions 1,
2 and 3, if the loss functions are convex, for any i ∈ V ,
Algorithm 1 guarantees

Regreti ≤
2Dn

η
+ ηdDG2TnL. (13)

10228



Algorithm 2: Distributed Sampled Follow-the-Perturbed-
Leader (D-SFPL)
Input: Number of rounds T , communication matrix P , local
learner set V , perturbation parameter η, number of samples
m, linear optimization oracle OK(·)
Initialization: Set {z̃0,i = 0|i ∈ V }

1: for t = 1 to T do
2: for i ∈ V do
3: compute x̃u

t,i according to (14) for u = 1 to m

4: play x̃t,i =
1
m

∑m
u=1 x̃

u
t,i, observe ft,i and denote

∇̃t,i = ∇ft,i (x̃t,i)
5: update z̃t,i according to (15)
6: end for
7: end for

Especially, when η = 1
G

√
2

dLT , Algorithm 1 guarantees

Regreti ≤ 2DGn
√
2dLT = O(

√
T ).

Remark 2. Theorem 1 indicates that if losses are convex
(without the smoothness condition), D-FPL enjoys the opti-
mal regret of O(

√
T ) when η = O(T−1/2). To the best of

our knowledge, D-FPL is the first distributed extension of
FPL.

Distributed Sampled Follow-the-Perturbed-Leader
Notice that the expectation operation in D-FPL is computa-
tionally intractable in practice. To deal with this issue, we
propose Distributed Sampled Follow-the-Perturbed-Leader
(D-SFPL), which only solves m linear optimizations for
each local learner per round via the sampling technique (Co-
hen and Hazan 2015; Hazan and Minasyan 2020).

More clearly, at round t each local learner i samples m
random vectors vu

t,i (u = 1, · · ·m) from the unit ball B,
computes m temporary decisions

x̃u
t,i = OK

(
−z̃t−1,i +

1

η
· vu

t,i

)
(14)

and plays x̃t,i = 1
m

∑m
u=1 x̃

u
t,i as the final decision. Then,

learner i maintains z̃t,i as following

z̃t,i =
∑
j∈Ni

Pij z̃t−1,j + ∇̃t,i, (15)

where P is the communication matrix. Therefore, D-SFPL
only solves m · T linear optimizations, which is more com-
putationally efficient in comparison with D-FPL. We sum-
marize the detailed procedure in Algorithm 2 and present
expected regret bounds of D-SFPL in the following theorem.

Theorem 2. Let L = 1
2 + 3

√
n

1−σ2(P ) .Under Assumptions 1,
2 and 3, if the loss functions are convex, for any i ∈ V ,
Algorithm 2 guarantees an expected regret of

E [Regreti] ≤
2Dn

η
+ ηdDG2TnL+

6DGTn√
m

. (16)

Under the same assumptions, if the loss functions are con-
vex and β-smooth , Algorithm 2 guarantees an expected re-
gret of

E [Regreti] ≤
2Dn

η
+ ηdDG2TnL+

8βD2Tn

m
. (17)

Remark 3. Theorem 2 suggests that when η = O(T−1/2),
D-SFPL guarantees an expected regret of O(

√
T ) with m =

T for general convex losses and m =
√
T for smooth and

convex losses.

Although Theorem 2 provides the expected regret bounds
for D-SFPL, we still wonder whether it can enjoy the
bounds most of the time. For this reason, we present high-
probability regret bounds, which imply that D-SFPL guar-
antees almost the same bounds (up to logarithmic factors) as
that in Theorem 2.

Theorem 3. Let L = 1
2 + 3

√
n

1−σ2(P ) , r = 2D
√

2
m ln 2T

δ and

r′ = 2DG
√
2T ln 4

δ . Under Assumptions 1, 2 and 3, if the
loss functions are convex, for any i ∈ V and for any δ > 0,
Algorithm 2 with probability 1− δ guarantees a regret of

Regreti ≤
2Dn

η
+ ηdDG2TnL+ 3rGTn. (18)

Under the same assumption, if the loss functions are con-
vex and β-smooth , Algorithm 2 with probability 1− δ guar-
antees a regret of

Regreti ≤
2Dn

η
+ ηdDG2TnL+ 3r′n+ 2βr2Tn. (19)

Distributed Online Smooth Projection-Free Algorithm
In each round, D-SFPL needs to solve m linear optimiza-
tions where m may scale with T . This still leads to a high
computational cost. In the following, we investigate how to
decrease m to O(1) to promote the efficiency.

The key idea to handle this issue is the blocking tech-
nique (Garber and Kretzu 2020; Hazan and Minasyan 2020),
which divides the whole rounds into size-equivalent blocks
and only updates actions at the beginning of each block. By
applying this technique to D-SFPL, we propose Distributed
Online Smooth Projection-Free Algorithm (D-OSPA). It
should be noticed that D-OSPA updates z̃t,i with all local
gradients in the same block instead of only one:

z̃t,i =
∑
j∈Ni

Pij z̃t−1,j + ∇̃t−k:t−1,i, (20)

where ∇̃t−k:t−1,i is the sum of all local gradients for leaner
i in one block (from round t− k to round t− 1).

We can derive the regret bounds of D-OSPA from pre-
vious theorems by using reductions, e.g., aggregating local
loss functions ft,i for learner i in the same block into a
new loss function f ′

t′,i. The reduced game has T ′ = T/k

rounds (without loss of generality we assume T ′ is an in-
teger), where k is the block size and T is the number of
whole rounds in the original game. Here, we list some cru-
cial changes in the reduced game as follows.

• In Assumption 1, the domain set in the reduced game is
upper bounded by D′ = D.

• In Assumption 2, for the block loss function f ′
t′,i =∑t′·k

t=(t′−1)·k+1 ft,i, the Lipschitz constant in the reduced
game is G′ = k ·G.
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Algorithm 3: Distributed Online Smooth Projection-Free
Algorithm (D-OSPA)
Input: Number of rounds T , communication matrix P , local
learner set V , perturbation parameter η, number of sample
m, block size k, linear optimization oracle OK(·)
Initialization: For any local learner i, set z̃0,i = 0 and
choose arbitrary x̃0,i ∈ K

1: for t = 1 to T do
2: for i ∈ V do
3: if t mod k = 1 and t > 1 then
4: update z̃t,i according to (20)
5: compute x̃u

t,i according to (14) for u = 1 to m

6: play x̃t,i = 1
m

∑m
u=1 x̃

u
t,i, observe ft,i and de-

note ∇̃t,i = ∇ft,i (x̃t,i)
7: else
8: update z̃t,i = z̃t−1,i

9: play x̃t,i = x̃t−1,i, observe ft,i and denote
∇̃t,i = ∇ft,i (x̃t,i)

10: end if
11: end for
12: end for

• If ft,i is β-smooth, then the block loss function f ′
t′,i =∑t′·k

t=(t′−1)·k+1 ft,i is β′-smooth where β′ = k · β.

After above reductions, the reduced game still guarantees
Theorem 2 and Theorem 3 with the domain bound D′, the
gradient bound G′, the total rounds T ′, the local loss func-
tion f ′

t,i and the smoothness parameter β′. Then, we obtain
the following theorems.

Theorem 4. Let L = 1
2+

3
√
n

1−σ2(P ) , m = k = T 1/2 and η =

1
kG

√
2
dLT

−1/2. Under Assumptions 1, 2 and 3, if the loss
functions are convex, for any i ∈ V , Algorithm 3 guarantees
an expected regret of

E [Regreti] ≤ nGD
(
2
√
2dL+ 6

)
T

3
4 = O

(
T

3
4

)
. (21)

Let m = k = T 1/3 and η = 1
kG

√
2
dLT

−2/3. Under
the same assumption, if the loss functions are convex and
β-smooth , Algorithm 3 guarantees an expected regret of

E [Regreti] ≤ nD
(
2G

√
2dL+ 8βD

)
T

2
3 = O

(
T

2
3

)
.

(22)
Theorem 5. Under Assumptions 1, 2 and 3, if the loss func-
tions are convex , for any i ∈ V and for any δ > 0, Algo-
rithm 3 with probability 1− δ guarantees a regret of

Regreti = Õ
(
T

3
4 ln

1

δ

)
. (23)

Under the same assumption, if the loss functions are con-
vex and β-smooth , Algorithm 3 with probability 1− δ guar-
antees a regret of

Regreti = Õ
(
T

2
3 ln

1

δ

)
. (24)

Remark 4. Above theorems imply that D-OSPA has almost
the same regret as OSPF (Hazan and Minasyan 2020). How-
ever, D-OSPA is applied in distributed scenarios and there-
fore, is more scalable.

Remark 5. With the parameter choice of m = k, we only
need to solve one linear optimization in each round on aver-
age. Hence, D-OSPA is more efficient than D-SFPL.

We notice that for smooth and convex losses, D-OSPA
needs to communicate with neighbors O(T 2/3) times due to
the T 1/3 block size. While D-BOCG (Wan, Tu, and Zhang
2020) needs only O(T 1/2) due to the T 1/2 block size. How-
ever, it does not imply that D-OSPA has a higher commu-
nication complexity because their regret bounds are differ-
ent. To be more clear, we use the metric Tϵ introduced by
Hazan and Minasyan (2020): the number of computing gra-
dients and solving linear optimizations during the whole
rounds until the average regret is ϵ at most. In the case of
smooth and convex losses, D-OSPA achieves Tϵ = O(d/ϵ3)
with O(d/ϵ2) communication complexity, while D-BOCG
achieves Tϵ = O(1/ϵ4) with O(1/ϵ2) communication com-
plexity. Thus, under almost equal communication complex-
ity (up to the dimension d), D-OSPA actually promotes the
convergence rate by exploiting the smoothness of losses.
The dimension dependence is a byproduct of Follow-the-
Perturbed-Leader and whether it can be removed is still an
open problem (Hazan and Minasyan 2020).

Theoretical Analysis
The extension of previous methods is intuitive, and the main
challenge of this work lies in theoretical analysis. We sum-
marize the major difficulty as following.

Each learner cannot access local information of all
other learners in the distributed network. Hence, it is
difficult to bound the global regret on each leaner sep-
arately.

To cope with this problem, we establish the connections be-
tween any local learner i and a virtual centralized learner.
Then, the global regret analysis can be converted to this vir-
tual learner without loosing too much.

Due to the limitation of space, we only present the de-
tailed proof of Theorem 1. The omitted proofs can be found
in the supplementary material.

Proof of Theorem 1
In the beginning, we review the standard definition of
Fenchel Dual (Boyd and Vandenberghe 2004).

Definition 4. Let f(x) : K → R be a function over K. The
Fenchel dual of f(x) is defined as f∗(y), which satisfies

∀y ∈ Rd, f∗(y) = sup
x∈K

{⟨y,x⟩ − f(x)} . (25)

For brevity, we denote h∗
η(y) = Ev∼B

[
MK(y + 1

η · v)
]
,

which is described as the Fenchel Dual of the regularization
hη(y) in the analysis framework. According to ∇MK(y) =

OK(y), we can obtain ∇h∗
η(y) = Ev∼B

[
OK(y + 1

η · v)
]
.
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Then, we introduce z̄t−1 = 1
n

∑n
j=1 zt−1,j as the average

of all dual variables and x̄t = ∇h∗
η(−z̄t−1) as the decision

made by a virtual centralized learner. According to the fol-
lowing lemma, we can upper bound the distance between the
decision of local learner i and that of the virtual one.
Lemma 1. Let zt,i and xt,i be defined as that in Algorithm
1. Denote z̄t−1 = 1

n

∑n
j=1 zt−1,j and x̄t = ∇h∗

η(−z̄t−1),
then we have

∥x̄t − xt,i∥2 ≤ ϵ, (26)

where ϵ = ηdD
√
nG

1−σ2(P ) .

Applying Lemma 1, the global regret for Algorithm 1 can
be upper bounded by a temporary term with respect to the
virtual learner, as stated below.

Lemma 2. Let x∗ = argminx∈K
∑n

j=1

∑T
t=1 ft,j(x) and

x̄t = ∇h∗
η(−z̄t−1). Then, we have

Regreti =
n∑

j=1

T∑
t=1

[ft,j(xt,i)− ft,j(x
∗)]

≤ n

T∑
t=1

〈
∇̄t, x̄t − x∗〉+ 3ϵGTn,

(27)

in which ∇̄t =
1
n

∑n
j=1 ∇t,j and ϵ = ηdD

√
nG

1−σ2(P ) .

Remark 6. Lemma 2 indicates that the global regret of Al-
gorithm 1 is upper bounded by a linear term. This term can
be viewed as the difference between the loss with x̄t made
by the virtual learner and the fixed decision x∗, where the
loss function is Ft(x) =

〈
∇̄t,x

〉
. Therefore, we can con-

vert the theoretical analysis to this virtual learner, without
loosing too much in the global regret.

Next, to upper bound
∑T

t=1

〈
∇̄t, x̄t − x∗〉, we follow the

primal-dual framework (Shalev-Shwartz and Singer 2007,
2006) and consider the primal optimization problem as de-
scribed below

min
x∈K

{
hη(x) +

T∑
t=1

Ft(x)

}
, (28)

where Ft(x) is defined as Ft(x) =
〈
∇̄t,x

〉
and hη(x) is

viewed as the regularization. By using Lagrange multipliers,
the dual problem of (28) is placed as follows

max
λ̄1,··· ,λ̄T

D(λ̄1, · · · , λ̄T ) = −h∗
η

(
−

T∑
t=1

λ̄t

)
−

T∑
t=1

F ∗
t (λ̄t).

(29)
Details can be found in Shalev-Shwartz and Singer (2006).
By weak duality, the dual problem (29) is upper bounded by
(28). Hence, it is natural to get the solution of (28) by in-
creasing D(λ̄1, · · · , λ̄T ) with different λ̄r(r = 1, · · · , T ).
Following Shalev-Shwartz and Singer (2006), we choose
D(λ̄t

1, · · · , λ̄t
r, λ̄

t
r+1, · · · , λ̄t

T ) = D(∇̄1, · · · , ∇̄t, 0, · · · , 0)
at round t, which means for D(λ̄t

1, · · · , λ̄t
T ) we have

λ̄t
r =

{
∇̄r, if r ≤ t

0, if r > t
. (30)

Furthermore, according to the definition of dual problem
(29), we can obtain

D(λ̄t
1, · · · , λ̄t

T ) = D(∇̄1, · · · , ∇̄t, 0, · · · , 0)

= −h∗
η

(
−∇̄1:t

)
−

t∑
r=1

F ∗
r (∇̄r)−

T∑
r=t+1

F ∗
r (0).

(31)

For convenience, denote the optimal solution of (29) as
λ̄∗
1, · · · , λ̄∗

T = argmaxλ̄1,··· ,λ̄T
D(λ̄1, · · · , λ̄T ). And we

can upper bound of D(λ̄∗
1, · · · , λ̄∗

T ), as described below.

Lemma 3. Let λ̄∗
1, · · · , λ̄∗

T be the optimal solution of
D(λ̄1, · · · , λ̄T ). Then, we have

D(λ̄∗
1, · · · , λ̄∗

T ) ≤
D

η
+min

x∈K

T∑
t=1

Ft(x). (32)

Now, consider D(λ̄T
1 , · · · , λ̄T

T ) = D(∇̄1, · · · , ∇̄T ), the
value of the dual problem (29) at round T . We can provide a
lower bound of D(∇̄1, · · · , ∇̄T ), as stated below.
Lemma 4. Under Assumptions 1 and 2, we have

D(∇̄1, · · · , ∇̄T ) ≥
T∑

t=1

Ft(x̄t)−
ηdD

2
G2T − D

η
. (33)

In fact, according to the definition of λ̄∗
1, · · · , λ̄∗

T and
Lemma 3, we have

D(∇̄1, · · · , ∇̄T ) ≤ D(λ̄∗
1, · · · , λ̄∗

T )
(32)
≤ D

η
+min

x∈K

T∑
t=1

Ft(x).

(34)

Substituting (33) into (34), we have

T∑
t=1

Ft(x̄t)−
T∑

t=1

Ft(x
∗) ≤

T∑
t=1

Ft(x̄t)−min
x∈K

T∑
t=1

Ft(x)

≤ ηdD

2
G2T +

2D

η
,

(35)

where x∗ = argminx∈K
∑n

j=1

∑T
t=1 ft,j(x).

Applying Lemma 2 and (35) , we have

Regreti ≤ n
T∑

t=1

〈
∇̄t, x̄t − x∗〉+ 3ϵGTn

= n
T∑

t=1

[Ft(x̄t)− Ft(x
∗)] + 3ϵGTn

(35)
≤ n

{
ηdD

2
G2T +

2D

η

}
+ 3ϵGTn

=
2Dn

η
+ ηdDG2TnL,

(36)

where L = 1
2 + 3

√
n

1−σ2(P ) . If η = 1
G

√
2

dLT , we obtain that

Regreti = 2DGn
√
2dLT = O(

√
T ). (37)
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Figure 1: Experiments on benchmark datasets.

Experiments
In this section, we provide experimental results on bench-
mark datasets to illustrate the empirical performance of our
proposed method.

Experimental Settings
Following Zhang et al. (2017), we conduct the simula-
tion experiments for multiclass classification in D-OCO.
At round t, local learner i receives a training example
et,i ∈ Rk from class yt,i ∈ {1, · · · , h}. Then, learner
i chooses a decision Xt,i =

[
x⊤
1 ; · · · ;x⊤

h

]
from K ={

X ∈ Rh×k : ∥X∥∗ ≤ τ
}

, where ∥·∥∗ is the trace norm of
matrices and τ is a constant. After that, learner i predicts
the class label of et,i with argmaxl∈[h] x

⊤
l et,i and incurs a

multivariate logistic loss

ft,i (Xt,i) = log

1 +
∑
l ̸=yt,i

exp
(
x⊤
l et,i − x⊤

yt,i
et,i

) ,

which is a smooth and convex function. In our experiments,
learners are connected via a cycle graph with 9 nodes, which
indicates that local learner i has only two neighbors. Corre-
spondingly, the communication matrix P is set as Pij = 1/3
if j ∈ N(i) or j = i, which satisfies Assumption 3. Besides,
we use the average loss 1

tn2

∑t
r=1

∑n
i=1

∑n
j=1 fr,j(Xr,i)

introduced by Wan, Tu, and Zhang (2020) to measure the
performance of each method at round t.

Experimental Results
We choose D-OCG (Zhang et al. 2017) and D-BOCG (Wan,
Tu, and Zhang 2020) as baseline methods. In details, we set
τ = 10 and the parameters of each method are set according
to their theoretical suggestions. For D-OCG, σt,i = 1/

√
t

and η = cT−3/4. For D-BOCG, K = ⌊T 1/2⌋, Lϵ = 20 and
η = cT−3/4 . For D-OSPA, we conduct two versions:

• D-OSPAsc for smooth and convex losses with m = k =
⌊T 1/3⌋ and η = cT−2/3;

• D-OSPAc for general convex losses with m = k =
⌊T 1/2⌋ and η = cT−3/4.

Since D-OSPA is a randomized algorithm, we repeat the ex-
periments 10 times and the average results are reported. The
hyper-parameter c is selected from {2−3, 2−2, · · · , 26}. The
experiments are conducted on aloi and shuttle from LIB-
SVM repository (Chang and Lin 2011).

Fig. 1 shows the change of average loss against the num-
ber of iterations for each method. As can be seen, by ex-
ploiting the smoothness of loss functions, D-OSPAsc con-
verges faster than baseline methods and achieves the lowest
average loss on two datasets. When only utilizing the con-
vexity of losses, D-OSPAc performs similarly with D-OCG
and D-BOCG, which is reasonable because of their same
theoretical guarantees.

Conclusion and Future Work

In this paper, we propose the first distributed variant of
Follow-the-Perturbed-Leader, which achieves the optimal
regret of O(

√
T ) in D-OCO. Then, we reduce the compu-

tational cost by utilizing sampling and blocking techniques.
In this way, we obtain a new distributed projection-free
method, termed as Distributed Online Smooth Projection-
Free Algorithm (D-OSPA), with one linear optimization
per round on average for each local learner. By exploit-
ing the smoothness of loss functions, our D-OSPA achieves
an O(T 2/3) regret bound, which is better than previ-
ous projection-free methods in D-OCO. Finally, we con-
duct simulation experiments on benchmark datasets, which
demonstrate the effectiveness of D-OSPA.

Currently, we only consider static regret. In the future,
we will investigate dynamic regret for distributed projection-
free online learning. We note that in the centralized setting,
recent work (Wan, Xue, and Zhang 2021; Wan, Zhang, and
Song 2023) have established dynamic bounds for projection-
free methods. But in the distributed setting, it seems non-
trivial, and we leave it as future work.
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Lee, S.; Nedić, A.; and Raginsky, M. 2016. Coordi-
nate Dual Averaging for Decentralized Online Optimiza-
tion with Nonseparable Global Objectives. ArXiv e-prints,
arXiv:1508.07933v2.
Lesage-Landry, A.; and Callaway, D. S. 2020. Dynamic and
Distributed Online Convex Optimization for Demand Re-
sponse of Commercial Buildings. IEEE Control Systems
Letters, 4(3): 632–637.
Levy, K.; and Krause, A. 2019. Projection Free Online
Learning over Smooth Sets. In Proceedings of the 22nd In-
ternational Conference on Artificial Intelligence and Statis-
tics, 1458–1466.
Li, D.; Wong, K. D.; Hu, Y. H.; and Sayeed, A. M. 2002. De-
tection, Classification and Tracking of Targets in Distributed
Sensor Networks. IEEE Signal Processing Magazine, 19(2):
17–29.
Mhammedi, Z. 2022. Efficient Projection-Free Online Con-
vex Optimization with Membership Oracle. In Proceedings
of the 35th Conference on Learning Theory, 5314–5390.
Molinaro, M. 2020. Curvature of Feasible Sets in Offline
and Online Optimization. ArXiv e-prints, arXiv:2002.03213.
Nesterov, Y. 2009. Primal-dual Subgradient Methods for
Convex Problems. Mathematical Programming, 120(1):
261–283.
Orabona, F.; Cesa-Bianchi, N.; and Gentile, C. 2012. Be-
yond Logarithmic Bounds in Online Learning. In Proceed-
ings of the 15th International Conference on Artificial Intel-
ligence and Statistics, 823–831.
Ram, S. S.; Nedich, A.; and Veeravalli, V. V. 2010. Dis-
tributed Stochastic Subgradient Projection Algorithms for
Convex Optimization. Journal of Optimization Theory and
Applications, 147(3): 516–545.
Shahrampour, S.; and Jadbabaie, A. 2018. Distributed On-
line Optimization in Dynamic Environments Using Mirror
Descent. IEEE Transactions on Automatic Control, 63(3):
714–725.
Shalev-Shwartz, S.; and Singer, Y. 2006. Convex Repeated
Games and Fenchel Duality. In Advances in Neural Infor-
mation Processing Systems 19, 1265–1272.
Shalev-Shwartz, S.; and Singer, Y. 2007. A Primal-dual Per-
spective of Online Learning Algorithm. Machine Learning,
69(2-3): 115–142.
Srebro, N.; Sridharan, K.; and Tewari, A. 2010. Smoothness,
Low Noise and Fast Rates. In Advances in Neural Informa-
tion Processing Systems 23, 2199–2207.
Wan, Y.; Tu, W.-W.; and Zhang, L. 2020. Projection-free
Distributed Online Convex Optimization with O(

√
T ) Com-

munication Complexity. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, 9818–9828.
Wan, Y.; Wang, G.; Tu, W.-W.; and Zhang, L. 2022.
Projection-free Distributed Online Learning with Sublinear

10233



Communication Complexity. Journal of Machine Learning
Research, 23(172): 1–53.
Wan, Y.; Xue, B.; and Zhang, L. 2021. Projection-free On-
line Learning in Dynamic Environments. In Proceedings
of the 35th AAAI Conference on Artificial Intelligence Ad-
vances, 10067–10075.
Wan, Y.; and Zhang, L. 2021. Projection-free Online Learn-
ing over Strongly Convex Set. In Proceedings of the
35th AAAI Conference on Artificial Intelligence Advances,
10076–10084.
Wan, Y.; Zhang, L.; and Song, M. 2023. Improved Dy-
namic Regret for Online Frank-Wolfe. ArXiv e-prints,
arXiv:2302.05620.
Yan, F.; Sundaram, S.; Vishwanathan, S.; and Qi, Y. 2013.
Distributed Autonomous Online Learning: Regrets and In-
trinsic Privacy-Preserving Properties. IEEE Transactions on
Knowledge and Data Engineering, 25(11): 2483–2493.
Yuan, K.; Ling, Q.; and Yin, W. 2016. On the Convergence
of Decentralized Gradient Descent. SIAM Journal on Opti-
mization, 26(3): 1835–1854.
Zhang, W.; Zhao, P.; Zhu, W.; Hoi, S. C. H.; and Zhang, T.
2017. Projection-free Distributed Online Learning in Net-
works. In Proceedings of the 34th International Conference
on Machine Learning, 4054–4062.
Zinkevich, M. 2003. Online Convex Programming and Gen-
eralized Infinitesimal Gradient Ascent. In Proceedings of
the 20th International Conference on Machine Learning,
928–936.

10234


