
Additional Experiments
In this section, we further consider online matrix completion
with strongly convex loss functions, and verify the efficien-
cy and effectiveness of our Multi-OCG+. All algorithms are
implemented wtih Matlab R2016b and tested on a linux ma-
chine with 2.4GHz CPU and 768GB RAM.

The settings are mainly following our main paper, and we
only make two slight changes as follows.
• The original loss function is replaced with

ft(X) =
∑

(i,j)∈OBt

|Xij −Mij |+ λ‖X‖2F

which is 2λ-strongly convex, where we set λ = 1e− 4.
• Instead of T = 3000, we equally divided the dataset used

in previous experiments into T = 300 partitions accord-
ing to its original sequence.

The first baseline is the strongly convex variant of RFTL
(SC-RFTL), which updates as

xt+1 = argmin
x∈K

t∑
i=1

(
∇fi(x)>x +

λ

2
‖x− xi‖22

)
+
λ

2
‖x− x1‖22.

The second baseline is Multi-SC-RFTL that is a projection-
based variant of our Multi-OCG+ by only replacing the line
12 of Algorithm 2 with

xγt+1 = argmin
x∈K

F γt+1(x).

For strongly convex functions, it is not hard to verify that
SC-RFTL achieves the O(log T ) static regret bound, and
Multi-SC-RFTL attains the same dynamic regret bound as
our Multi-OCG+.

In this experiment, we set Kγ = 8 for Multi-OCG+.
Moreover, for both Multi-SC-RFTL and Multi-OCG+, the
parameter τ is set to be 1e − 3. Figure 2 shows the cu-
mulative loss and runtime of each algorithm for online ma-
trix completion with strongly convex loss functions. We find
that the performance of SC-RFTL becomes worse after the
environment changes, which shows that SC-RFTL cannot
deal with dynamic environments. By contrast, Multi-SC-
RFTL and our Multi-OCG+ can catch up with changing en-
vironments. Moreover, our Multi-OCG+ matches the perfor-
mance of Multi-SC-RFTL, and is faster than it, which veri-
fies the advantage of our algorithm in time cost.

Detailed Proofs
Proof of Lemma 1
We will utilize the property of strongly convex function, and
the convergence of conditional gradient. If f(x) : K → R is
α-strongly convex and x∗ = argminx∈K f(x), combining
Definition 3 with the first order optimally condition (Boy-
d and Vandenberghe 2004), Hazan and Kale (2012) have
proved that

α

2
‖x− x∗‖22 ≤ f(x)− f(x∗) (10)

for any x ∈ K. The following lemma gives the convergence
rate of conditional gradient.

Lemma 3 (Derived from Theorem 1 of Jaggi (2013)) If
F (x) : K → R is a convex and α-smooth function and
Assumption 1 holds, Algorithm 1 ensures

F (xout)− F (x∗) ≤
2αD2

K + 2
.

where x∗ ∈ argminx∈K F (x).

Let F γt (x) = ηγ
∑t−1
i=qj
∇fi(xγi )>x + ‖x − xγqj‖

2
2 and

x̂∗t = argminx∈K F
γ
t (x) for any t ∈ [qj , qj+1]. According

to the convexity of ft, we have

qj+1−1∑
t=qj

ft(x
γ
t )−

qj+1−1∑
t=qj

ft(x
∗)

≤
qj+1−1∑
t=qj

∇ft(xγt )>(xγt − x∗)

=

qj+1−1∑
t=qj

∇ft(xγt )>(xγt − x̂∗t )︸ ︷︷ ︸
:=A

+

qj+1−1∑
t=qj

∇ft(xγt )>(x̂∗t − x∗)

︸ ︷︷ ︸
:=B

.

(11)

Therefore, we can establish the regret bound by bounding A
and B, respectively.

Note that for any t ∈ [qj , qj+1], F γt (x) is 2-strongly con-
vex and 2-smooth. We can bound A as

qj+1−1∑
t=qj

∇ft(xγt )>(xγt − x̂∗t )

≤
qj+1−1∑
t=qj

‖∇ft(xγt )‖2‖xγt − x̂∗t ‖2

≤G
qj+1−1∑
t=qj

‖xγt − x̂∗t ‖2

≤G
qj+1−1∑
t=qj

√
F γt (xγt )− F γt (x̂∗t )

≤Gγ

√
4D2

γ + 2
≤ 2GD

√
γ

(12)

where the third inequality is due to (10) and the fourth in-
equality is due to Lemma 3.

To bound B, we introduce the following lemma.

Lemma 4 (Lemma 2.3 of Shalev-Shwartz (2011)) Let x̂∗t =

argmin
x∈K

{∑t−1
i=1 fi(x) +R(x)

}
,∀t ∈ [T ]. Then, ∀x ∈ K,



Number of Iterations

0 50 100 150 200 250 300

C
u
m
u
la
ti
v
e
L
o
ss

×105

0

2

4

6

8

10
SC-RFTL

Multi-SC-RFTL

Multi-OCG+

(a) Comparison of cumulative loss

Number of Iterations
0 50 100 150 200 250 300

C
u
m
u
la
ti
ve

R
u
n
ti
m
e
(s
)

0

500

1000

1500

2000

2500

3000
SC-RFTL
Multi-SC-RFTL
Multi-OCG+

(b) Comparison of cumulative runtime

Figure 2: Experimental results for online matrix completion with strongly convex losses in dynamic environments

it holds that
T∑
t=1

(ft(x̂
∗
t )− ft(x))

≤R(x)−R(x̂∗1) +

T∑
t=1

(
ft(x̂

∗
t )− ft(x̂∗t+1)

)
.

Applying Lemma 4 with the linear loss function-
s
{
∇ft(xγt )>x

}qj+1−1
t=qj

and the regularizer R(x) =

‖x−xγqj ‖
2
2

ηγ
, we can bound B as

qj+1−1∑
t=qj

∇ft(xγt )>(x̂∗t − x∗)

≤
‖x∗ − xγqj‖

2
2

ηγ
− 0 +

qj+1−1∑
t=qj

∇ft(xγt )>(x̂∗t − x̂∗t+1)

≤D
2

ηγ
+

qj+1−1∑
t=qj

‖∇ft(xγt )‖2‖x̂∗t − x̂∗t+1‖2

≤D
2

ηγ
+G

qj+1−1∑
t=qj

‖x̂∗t − x̂∗t+1‖2.

(13)

Moreover, because for any t ∈ [qj , qj+1], F γt (x) is 2-
strongly convex, we have

‖x̂∗t − x̂∗t+1‖22
≤F γt+1(x̂∗t )− F

γ
t+1(x̂∗t+1)

=F γt (x̂∗t ) + ηγ∇ft(xγt )>x̂∗t − F
γ
t (x̂∗t+1)

− ηγ∇ft(xγt )>x̂∗t+1

=F γt (x̂∗t )− F
γ
t (x̂∗t+1) + ηγ∇ft(xγt )>

(
x̂∗t − x̂∗t+1

)
≤ηγ‖∇ft(xγt )‖2‖x̂∗t − x̂∗t+1‖2

which implies that
‖x̂∗t − x̂∗t+1‖2 ≤ ηγ‖∇ft(x

γ
t )‖2. (14)

Substituting (14) in to (13), we further have

qj+1−1∑
t=qj

∇ft(xγt )>(x̂∗t − x∗)

≤D
2

ηγ
+ ηγG

qj+1−1∑
t=qj

‖∇ft(xγt )‖2

≤D
2

ηγ
+ ηγγG

2 ≤ 2GD
√
γ.

(15)

Substituting (12) and (15) into (11), we complete this proof.

Proof of Lemma 2

Since OCG+ essentially performs the same steps on time
intervals

[q1, q2 − 1], [q2, q3 − 1], · · · , [qr, qr+1 − 1]

successively, we only need to prove this lemma for j = 1,
i.e.,

q2−1∑
t=1

ft(x
γ
t )−

q2−1∑
t=1

ft(x
∗)

≤λD
2

2
+ 2(G+ λD)D +

2(G+ λD)2 ln(γ + 1)

λ
.

For any j = 2, · · · , r, we can adopt the same proof steps.

Let f̃t(x) = ∇ft(xγt )>x + λ
2 ‖x − xγt ‖22 for any t ∈

[1, q2 − 1] and f̃0(x) = λ
2 ‖x − xγ1‖22. Moreover, let

F γt (x) =
∑t−1
i=0 f̃i(x) and x̂∗t = argminx∈K F

γ
t (x) for any

t ∈ [1, q2].



Since each ft(x) is λ-strongly convex, we have

q2−1∑
t=1

ft(x
γ
t )−

q2−1∑
t=1

ft(x
∗)

≤
q2−1∑
t=1

(
∇ft(xγt )>(xγt − x∗)− λ

2
‖xγt − x∗‖22

)

=

q2−1∑
t=1

(f̃t(x
γ
t )− f̃t(x∗))

=

q2−1∑
t=1

(f̃t(x
γ
t )− f̃t(x̂∗t+1))︸ ︷︷ ︸
:=A

+

q2−1∑
t=1

(f̃t(x̂
∗
t+1)− f̃t(x∗))︸ ︷︷ ︸
:=B

.

(16)

Therefore, we can establish the regret bound by bounding A
and B, respectively.

For any x,y ∈ K and t ∈ [1, q2 − 1], we have

f̃t(x)− f̃t(y)

≤∇f̃t(x)>(x− y)

=(∇ft(xγt ) + λ(x− xγt ))>(x− y)

≤‖∇ft(xγt ) + λ(x− xγt )‖2‖x− y‖2
≤(G+ λD)‖x− y‖2.

Furthermore, for any t ∈ [1, q2 − 1], we have

F γt+1(x̂∗t )− F
γ
t+1(x̂∗t+1)

=F γt (x̂∗t )− F
γ
t (x̂∗t+1) + f̃t(x̂

∗
t )− f̃t(x̂∗t+1)

≤(G+ λD)‖x̂∗t − x̂∗t+1‖2.
(17)

Moreover, since each Ft(x) is tλ-strongly convex, for any
t ∈ [1, q2 − 1], we have

‖x̂∗t − x̂∗t+1‖22 ≤
2(F γt+1(x̂∗t )− F

γ
t+1(x̂∗t+1))

(t+ 1)λ
. (18)

Combining (17) and (18), for any t ∈ [1, q2 − 1], we have

‖x̂∗t − x̂∗t+1‖2 ≤
2(G+ λD)

(t+ 1)λ
. (19)

Note that for any t ∈ [1, q2 − 1], F γt (x) is also tλ-smooth.

Then, we can bound A as

q2−1∑
t=1

(f̃t(x
γ
t )− f̃t(x∗t+1))

≤
q2−1∑
t=1

(G+ λD)‖xγt − x̂∗t+1‖2

≤(G+ λD)

q2−1∑
t=1

‖xγt − x̂∗t ‖2

+ (G+ λD)

q2−1∑
t=1

‖x̂∗t − x̂∗t+1‖2

≤(G+ λD)

q2−1∑
t=1

√
2(F γt (xγt )− F γt (x̂∗t ))

tλ

+ (G+ λD)

q2−1∑
t=1

2(G+ λD)

(t+ 1)λ

≤(G+ λD)

q2−1∑
t=1

√
4D2

γ2 + 2

+ (G+ λD)

q2−1∑
t=1

2(G+ λD)

(t+ 1)λ

≤2(G+ λD)D +
2(G+ λD)2 ln(γ + 1)

λ

(20)

where the fourth inequality is due to Lemma 3.
To bound B, we introduce the following lemma.

Lemma 5 (Lemma 6.6 of Garber and Hazan (2016)) Let
{ft(x)}Tt=1 be a sequence of loss functions and let x∗t ∈
argminx∈K

∑t
τ=1 ft(x) for any t ∈ [T ]. Then, it holds that

T∑
t=1

ft(x
∗
t )−min

x∈K

T∑
t=1

ft(x) ≤ 0.

Applying Lemma 5 with the loss functions {f̃(x)}q2−1t=0 , we
have

q2−1∑
t=0

(f̃t(x̂
∗
t+1)− f̃t(x∗)) ≤ 0

which further implies that

B =

q2−1∑
t=1

(f̃t(x̂
∗
t+1)− f̃t(x∗)) ≤ f̃0(x∗)− f̃0(x̂∗1)

=
λ

2
‖x∗ − xγ1‖22 −

λ

2
‖x̂∗1 − xγ1‖22 ≤

λD2

2
.

(21)

Substituting (20) and (21) into (16), we complete this proof.



Proof of Corollary 1

If VT ≥
√

1
T , we can set 1 ≤ γ =

⌊(
T
VT

)2/3⌋
≤ T , and

have
T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)

≤8
√

2GDT 2/3V
1/3
T + 2T 2/3V

1/3
T .

Conversely, we can simply set γ = T and achieve

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x) ≤ 8GD
√
T + 2

√
T .

Proof of Corollary 2

If VT ≥ ln(T+1)
T , we can set 1 ≤ γ =

⌊√
T ln(T+1)

VT

⌋
≤ T ,

and have
T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)

≤4T
√
VT (c1 + c2 ln(γ + 1))√

T ln(T + 1)
+ 2
√
TVT ln(T + 1)

≤(4c1 + 4c2 + 2)
√
TVT ln(T + 1).

Conversely, we can simply set γ = T and achieve

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)

≤2(c1 + c2 ln(γ + 1)) + 2 ln(T + 1)

≤2c1 + (2c2 + 2) ln(T + 1).

Proof of Theorem 3
First, for any γ ∈ H, we have

T∑
t=1

ft(xt)−
T∑
t=1

min
x∈K

ft(x)

=

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
γ
t )︸ ︷︷ ︸

:=Aγ

+

T∑
t=1

ft(x
γ
t )−

T∑
t=1

min
x∈K

ft(x)︸ ︷︷ ︸
:=Bγ

.

(22)

To bound Aγ , we first introduce the following lemma.

Lemma 6 (Lemma 1 in Zhang, Lu, and Zhou (2018)) Under
Assumptions 1 and 2, Algorithm 3 has

T∑
t=1

ft(xt)−min
γ∈H

(
T∑
t=1

ft(x
γ
t ) +

1

τ
ln

1

wγ1

)
≤ τTG2D2

8
.

Using Lemma 6 with τ =
√

8
TG2D2 , for any γ ∈ H, we

have
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
γ
t )

≤1

τ
ln

1

wγ1
+
τTG2D2

8

≤
√
TG2D2

8

(
1 + ln

1

wγ1

)
≤
√
TG2D2

8
(1 + 2 lnN) .

(23)

Then, we need to bound Bγ . If VT ≥
√

1
T , we define 1 ≤

γ∗ =

⌊(
T
VT

)2/3⌋
≤ T . Because of

H =
{
γi = 2i|i = 0, · · · , N

}
where N = blog2(T )c, there must exist a γi ∈ H such that

γi ≤ γ∗ < 2γi.

Therefore, for γi, we have
T∑
t=1

ft(x
γi
t )−

T∑
t=1

min
x∈K

ft(x)

≤8TGD
√
γi

+ 2γiVT

≤8
√

2TGD√
γ∗

+ 2γ∗VT

≤16GDT 2/3V
1/3
T + 2T 2/3V

1/3
T

(24)

where the first inequality is due to Theorem 1.
Conversely, we can simply set γ∗ = T . Similarly, there

must exist a γi ∈ H such that
γi ≤ γ∗ < 2γi.

Therefore, we have
T∑
t=1

ft(x
γi
t )−

T∑
t=1

min
x∈K

ft(x)

≤8TGD
√
γi

+ 2γiVT

≤8
√

2GDT√
γ∗

+ 2γ∗VT

≤8
√

2GD
√
T + 2

√
T

(25)

Combining (22), (23), (24) and (25), we achieve
T∑
t=1

ft(xt)−
T∑
t=1

min
x∈K

ft(x)

≤max
{
c3
√
T , c4T

2/3V
1/3
T

}
+

√
TG2D2

8
(1 + 2 lnN) .

where c3 = 8
√

2GD + 2 and c4 = 16GD + 2.



Proof of Theorem 4
This proof is similar as that of Theorem 3. First, it is not hard
to verify that (22) still holds. So we only need to bound Aγ
and Bγ in (22).

To bound Aγ , we introduce the following lemma.
Lemma 7 If ft(x) is λ-strongly convex for any t ∈ [T ] and
Assumptions 1 and 2 hold, Algorithm 3 with τ = λ

G2 has

T∑
t=1

ft(xt)−min
γ∈H

T∑
t=1

ft(x
γ
t ) ≤ 2G2

λ
lnN

where N = blog2(T )c.
Using Lemma 7, for any γ ∈ H, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
γ
t ) ≤ 2G2

λ
lnN. (26)

Then, we bound Bγ by utilizing Theorem 2. If VT ≥
ln(T+1)

T , we define 1 ≤ γ∗ =

⌊√
T ln(T+1)

VT

⌋
≤ T . Because

H =
{
γi = 2i|i = 0, · · · , N

}
where N = blog2(T )c, there must exist a γi ∈ H such that

γi ≤ γ∗ < 2γi.

Therefore, for γi, we have

T∑
t=1

ft(x
γi
t )−

T∑
t=1

min
x∈K

ft(x)

≤2T (c1 + c2 ln(γi + 1))

γi
+ 2γiVT

≤4T (c1 + c2 ln(γi + 1))

γ∗
+ 2γ∗VT

≤8T
√
VT (c1 + c2 ln(γi + 1))√

T ln(T + 1)
+ 2
√
TVT ln(T + 1)

≤(8c1 + 8c2 + 2)
√
TVT ln(T + 1)

(27)

where the first inequality is due to Theorem 2.
Conversely, we can simply set γ∗ = T . Similarly, there

must exist a γi ∈ H such that

γi ≤ γ∗ < 2γi.

Therefore, we have
T∑
t=1

ft(x
γi
t )−

T∑
t=1

min
x∈K

ft(x)

≤2T (c1 + c2 ln(γi + 1))

γi
+ 2γiVT

≤4T (c1 + c2 ln(γi + 1))

γ∗
+ 2γ∗VT

≤4(c1 + c2 ln(γi + 1)) + 2TVT

≤4c1 + (4c2 + 2) ln(T + 1).

(28)

Combining (22), (26), (27) and (28), we achieve

T∑
t=1

ft(xt)−
T∑
t=1

min
x∈K

ft(x)

≤max
{

4c1 + (4c2 + 2) ln(T + 1),

(8c1 + 8c2 + 2)
√
TVT ln(T + 1)

}
+

2G2

λ
lnN.

Proof of Lemma 7

We will utilize the theoretical guarantee of the exponentially
weighted average forecaster for exponentially concave (ab-
br. exp-concave) functions (Cesa-Bianchi and Lugosi 2006).
So, we first introduce the standard definition of exp-concave
functions (Cesa-Bianchi and Lugosi 2006).

Definition 3 Let f(x) : K → R be a function over K. It is
called α-exp-concave if exp(−αf(x)) is concave over K.

Furthermore, we introduce the following lemma, which re-
veals the relationship between strongly convex and exp-
concave functions.

Lemma 8 (Lemma 2 of Zhang et al. (2018)) Suppose f(x) :
K → R is λ-strongly convex and ‖∇f(x)‖2 ≤ G for all
x ∈ K. Then, f(x) is λ

G2 -exp-concave.

Note that we have set τ = λ
G2 in Algorithm 3 and each ft(x)

is λ-strongly convex loss function for t ∈ [T ]. Applying
Lemma 8, for any t ∈ [T ], ft(x) is τ -exp-concave, which
further implies that

e−τft(xt) = e−τft(
∑
γ∈H wγt x

γ
t ) ≥

∑
γ∈H

wγt e
−τft(xγt )

where the last inequality is due to the concavity of e−τft(x)
and Jensen’s inequality.

Taking logarithm, we have

ft(xt) ≤
− ln

∑
γ∈H w

γ
t e
−τft(xγt )

τ
.

Then, for any γ ∈ H, we have

ft(xt)− ft(xγt )

≤
− ln

∑
γ∈H w

γ
t e
−τft(xγt )

τ
− − ln e−τft(x

γ
t )

τ

=
1

τ
ln

e−τft(x
γ
t )∑

γ∈H w
γ
t e
−τft(xγt )

=
1

τ
ln

(
1

wγt
· wγt e

−τft(xγt )∑
γ∈H w

γ
t e
−τft(xγt )

)

=
1

τ
ln
wγt+1

wγt
.



Therefore, for any γ ∈ H, we have

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
γ
t )

≤1

τ

T∑
t=1

(
lnwγt+1 − lnwγt

)
≤1

τ

(
lnwγT+1 − lnwγ1

)
≤− G2

λ
lnwγ1 ≤

G2

λ
ln
N(N + 1)

C

=
2G2

λ
lnN

where the last equality is due to C = 1 + 1
N .


