Additional Experiments

In this section, we further consider online matrix completion with strongly convex loss functions, and verify the efficiency and effectiveness of our Multi-OCG+. All algorithms are implemented wtih Matlab R2016b and tested on a linux machine with 2.4 GHz CPU and 768 GB RAM.

The settings are mainly following our main paper, and we only make two slight changes as follows.

- The original loss function is replaced with

$$
f_{t}(X)=\sum_{(i, j) \in \mathrm{OB}_{t}}\left|X_{i j}-M_{i j}\right|+\lambda\|X\|_{F}^{2}
$$

which is 2λ-strongly convex, where we set $\lambda=1 e-4$.

- Instead of $T=3000$, we equally divided the dataset used in previous experiments into $T=300$ partitions according to its original sequence.
The first baseline is the strongly convex variant of RFTL (SC-RFTL), which updates as

$$
\begin{aligned}
\mathbf{x}_{t+1}= & \underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} \sum_{i=1}^{t}\left(\nabla f_{i}(\mathbf{x})^{\top} \mathbf{x}+\frac{\lambda}{2}\left\|\mathbf{x}-\mathbf{x}_{i}\right\|_{2}^{2}\right) \\
& +\frac{\lambda}{2}\left\|\mathbf{x}-\mathbf{x}_{1}\right\|_{2}^{2}
\end{aligned}
$$

The second baseline is Multi-SC-RFTL that is a projectionbased variant of our Multi-OCG+ by only replacing the line 12 of Algorithm 2 with

$$
\mathbf{x}_{t+1}^{\gamma}=\underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}} F_{t+1}^{\gamma}(\mathbf{x}) .
$$

For strongly convex functions, it is not hard to verify that SC-RFTL achieves the $O(\log T)$ static regret bound, and Multi-SC-RFTL attains the same dynamic regret bound as our Multi-OCG+.

In this experiment, we set $K_{\gamma}=8$ for Multi-OCG+. Moreover, for both Multi-SC-RFTL and Multi-OCG+, the parameter τ is set to be $1 e-3$. Figure 2 shows the cumulative loss and runtime of each algorithm for online matrix completion with strongly convex loss functions. We find that the performance of SC-RFTL becomes worse after the environment changes, which shows that SC-RFTL cannot deal with dynamic environments. By contrast, Multi-SCRFTL and our Multi-OCG+ can catch up with changing environments. Moreover, our Multi-OCG+ matches the performance of Multi-SC-RFTL, and is faster than it, which verifies the advantage of our algorithm in time cost.

Detailed Proofs

Proof of Lemma 1

We will utilize the property of strongly convex function, and the convergence of conditional gradient. If $f(\mathbf{x}): \mathcal{K} \rightarrow \mathbb{R}$ is α-strongly convex and $\mathbf{x}^{*}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} f(\mathbf{x})$, combining Definition 3 with the first order optimally condition (Boyd and Vandenberghe 2004), Hazan and Kale (2012) have proved that

$$
\begin{equation*}
\frac{\alpha}{2}\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2}^{2} \leq f(\mathbf{x})-f\left(\mathbf{x}^{*}\right) \tag{10}
\end{equation*}
$$

for any $\mathrm{x} \in \mathcal{K}$. The following lemma gives the convergence rate of conditional gradient.

Lemma 3 (Derived from Theorem 1 of Jaggi (2013)) If $F(\mathbf{x}): \mathcal{K} \rightarrow \mathbb{R}$ is a convex and α-smooth function and Assumption 1 holds, Algorithm 1 ensures

$$
F\left(\mathbf{x}_{\mathrm{out}}\right)-F\left(\mathbf{x}_{*}\right) \leq \frac{2 \alpha D^{2}}{K+2}
$$

where $\mathbf{x}_{*} \in \operatorname{argmin} \mathbf{x}_{\mathbf{x} \in \mathcal{K}} F(\mathbf{x})$.
Let $F_{t}^{\gamma}(\mathbf{x})=\eta_{\gamma} \sum_{i=q_{j}}^{t-1} \nabla f_{i}\left(\mathbf{x}_{i}^{\gamma}\right)^{\top} \mathbf{x}+\left\|\mathbf{x}-\mathbf{x}_{q_{j}}^{\gamma}\right\|_{2}^{2}$ and $\hat{\mathbf{x}}_{t}^{*}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} F_{t}^{\gamma}(\mathbf{x})$ for any $t \in\left[q_{j}, q_{j+1}\right]$. According to the convexity of f_{t}, we have

$$
\begin{align*}
& \sum_{t=q_{j}}^{q_{j+1}-1} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=q_{j}}^{q_{j+1}-1} f_{t}\left(\mathbf{x}^{*}\right) \\
\leq & \sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\mathbf{x}_{t}^{\gamma}-\mathbf{x}^{*}\right) \\
= & \underbrace{\sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t}^{*}\right)}_{:=A} \tag{11}\\
& +\underbrace{\sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\hat{\mathbf{x}}_{t}^{*}-\mathbf{x}^{*}\right)}_{:=B}
\end{align*}
$$

Therefore, we can establish the regret bound by bounding A and B, respectively.

Note that for any $t \in\left[q_{j}, q_{j+1}\right], F_{t}^{\gamma}(\mathbf{x})$ is 2-strongly convex and 2 -smooth. We can bound A as

$$
\begin{align*}
& \sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t}^{*}\right) \\
& \leq \sum_{t=q_{j}}^{q_{j+1}-1}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)\right\|_{2}\left\|\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t}^{*}\right\|_{2} \\
& \leq G \sum_{t=q_{j}}^{q_{j+1}-1}\left\|\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t}^{*}\right\|_{2} \tag{12}\\
& \leq G \sum_{t=q_{j}}^{q_{j+1}-1} \sqrt{F_{t}^{\gamma}\left(\mathbf{x}_{t}^{\gamma}\right)-F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)} \\
& \leq G \gamma \sqrt{\frac{4 D^{2}}{\gamma+2}} \leq 2 G D \sqrt{\gamma}
\end{align*}
$$

where the third inequality is due to (10) and the fourth inequality is due to Lemma 3.

To bound B, we introduce the following lemma.
Lemma 4 (Lemma 2.3 of Shalev-Shwartz (2011)) Let $\hat{\mathbf{x}}_{t}^{*}=$ $\underset{\mathbf{x} \in \mathcal{K}}{\operatorname{argmin}}\left\{\sum_{i=1}^{t-1} f_{i}(\mathbf{x})+\mathcal{R}(\mathbf{x})\right\}, \forall t \in[T]$. Then, $\forall \mathbf{x} \in \mathcal{K}$,

Figure 2: Experimental results for online matrix completion with strongly convex losses in dynamic environments

it holds that

$$
\begin{aligned}
& \sum_{t=1}^{T}\left(f_{t}\left(\hat{\mathbf{x}}_{t}^{*}\right)-f_{t}(\mathbf{x})\right) \\
\leq & \mathcal{R}(\mathbf{x})-\mathcal{R}\left(\hat{\mathbf{x}}_{1}^{*}\right)+\sum_{t=1}^{T}\left(f_{t}\left(\hat{\mathbf{x}}_{t}^{*}\right)-f_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)\right)
\end{aligned}
$$

Applying Lemma 4 with the linear loss functions $\left\{\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top} \mathbf{x}\right\}_{t=q_{j}}^{q_{j+1}-1}$ and the regularizer $\mathcal{R}(\mathbf{x})=$ $\frac{\left\|\mathbf{x}-\mathbf{x}_{q_{j}}^{\gamma}\right\|_{2}^{2}}{\eta_{\gamma}}$, we can bound B as

$$
\begin{align*}
& \sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\hat{\mathbf{x}}_{t}^{*}-\mathbf{x}^{*}\right) \\
\leq & \frac{\left\|\mathbf{x}^{*}-\mathbf{x}_{q_{j}}^{\gamma}\right\|_{2}^{2}}{\eta_{\gamma}}-0+\sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right) \\
\leq & \frac{D^{2}}{\eta_{\gamma}}+\sum_{t=q_{j}}^{q_{j+1}-1}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)\right\|_{2}\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} \tag{13}\\
\leq & \frac{D^{2}}{\eta_{\gamma}}+G \sum_{t=q_{j}}^{q_{j+1}-1}\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2}
\end{align*}
$$

Moreover, because for any $t \in\left[q_{j}, q_{j+1}\right], F_{t}^{\gamma}(\mathbf{x})$ is 2strongly convex, we have

$$
\begin{aligned}
& \left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2}^{2} \\
\leq & F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)-F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right) \\
= & F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)+\eta_{\gamma} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top} \hat{\mathbf{x}}_{t}^{*}-F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right) \\
& -\eta_{\gamma} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top} \hat{\mathbf{x}}_{t+1}^{*} \\
= & F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)-F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)+\eta_{\gamma} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right) \\
\leq & \eta_{\gamma}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)\right\|_{2}\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2}
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} \leq \eta_{\gamma}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)\right\|_{2} \tag{14}
\end{equation*}
$$

Substituting (14) in to (13), we further have

$$
\begin{align*}
& \sum_{t=q_{j}}^{q_{j+1}-1} \nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\hat{\mathbf{x}}_{t}^{*}-\mathbf{x}^{*}\right) \\
\leq & \frac{D^{2}}{\eta_{\gamma}}+\eta_{\gamma} G \sum_{t=q_{j}}^{q_{j+1}-1}\left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)\right\|_{2} \tag{15}\\
\leq & \frac{D^{2}}{\eta_{\gamma}}+\eta_{\gamma} \gamma G^{2} \leq 2 G D \sqrt{\gamma}
\end{align*}
$$

Substituting (12) and (15) into (11), we complete this proof.

Proof of Lemma 2

Since OCG+ essentially performs the same steps on time intervals

$$
\left[q_{1}, q_{2}-1\right],\left[q_{2}, q_{3}-1\right], \cdots,\left[q_{r}, q_{r+1}-1\right]
$$

successively, we only need to prove this lemma for $j=1$, i.e.,

$$
\begin{aligned}
& \sum_{t=1}^{q_{2}-1} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{q_{2}-1} f_{t}\left(\mathbf{x}^{*}\right) \\
\leq & \frac{\lambda D^{2}}{2}+2(G+\lambda D) D+\frac{2(G+\lambda D)^{2} \ln (\gamma+1)}{\lambda}
\end{aligned}
$$

For any $j=2, \cdots, r$, we can adopt the same proof steps.
Let $\tilde{f}_{t}(\mathbf{x})=\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top} \mathbf{x}+\frac{\lambda}{2}\left\|\mathbf{x}-\mathbf{x}_{t}^{\gamma}\right\|_{2}^{2}$ for any $t \in$ $\left[1, q_{2}-1\right]$ and $\tilde{f}_{0}(\mathbf{x})=\frac{\lambda}{2}\left\|\mathbf{x}-\mathbf{x}_{1}^{\gamma}\right\|_{2}^{2}$. Moreover, let $F_{t}^{\gamma}(\mathbf{x})=\sum_{i=0}^{t-1} \tilde{f}_{i}(\mathbf{x})$ and $\hat{\mathbf{x}}_{t}^{*}=\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} F_{t}^{\gamma}(\mathbf{x})$ for any $t \in\left[1, q_{2}\right]$.

Since each $f_{t}(\mathbf{x})$ is λ-strongly convex, we have

$$
\begin{align*}
& \sum_{t=1}^{q_{2}-1} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{q_{2}-1} f_{t}\left(\mathbf{x}^{*}\right) \\
\leq & \sum_{t=1}^{q_{2}-1}\left(\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)^{\top}\left(\mathbf{x}_{t}^{\gamma}-\mathbf{x}^{*}\right)-\frac{\lambda}{2}\left\|\mathbf{x}_{t}^{\gamma}-\mathbf{x}^{*}\right\|_{2}^{2}\right) \\
= & \sum_{t=1}^{q_{2}-1}\left(\tilde{f}_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\tilde{f}_{t}\left(\mathbf{x}^{*}\right)\right) \\
= & \underbrace{\sum_{t=1}^{q_{2}-1}\left(\tilde{f}_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)\right)}_{:=A}+\underbrace{\sum_{t=1}^{q_{2}-1}\left(\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)-\tilde{f}_{t}\left(\mathbf{x}^{*}\right)\right) .}_{:=B} \tag{16}
\end{align*}
$$

Therefore, we can establish the regret bound by bounding A and B, respectively.

For any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$ and $t \in\left[1, q_{2}-1\right]$, we have

$$
\begin{aligned}
& \tilde{f}_{t}(\mathbf{x})-\tilde{f}_{t}(\mathbf{y}) \\
\leq & \nabla \tilde{f}_{t}(\mathbf{x})^{\top}(\mathbf{x}-\mathbf{y}) \\
= & \left(\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)+\lambda\left(\mathbf{x}-\mathbf{x}_{t}^{\gamma}\right)\right)^{\top}(\mathbf{x}-\mathbf{y}) \\
\leq & \left\|\nabla f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)+\lambda\left(\mathbf{x}-\mathbf{x}_{t}^{\gamma}\right)\right\|_{2}\|\mathbf{x}-\mathbf{y}\|_{2} \\
\leq & (G+\lambda D)\|\mathbf{x}-\mathbf{y}\|_{2} .
\end{aligned}
$$

Furthermore, for any $t \in\left[1, q_{2}-1\right]$, we have

$$
\begin{align*}
& F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)-F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right) \\
= & F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)-F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)+\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t}^{*}\right)-\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right) \tag{17}\\
\leq & (G+\lambda D)\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} .
\end{align*}
$$

Moreover, since each $F_{t}(\mathbf{x})$ is $t \lambda$-strongly convex, for any $t \in\left[1, q_{2}-1\right]$, we have

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2}^{2} \leq \frac{2\left(F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)-F_{t+1}^{\gamma}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)\right)}{(t+1) \lambda} \tag{18}
\end{equation*}
$$

Combining (17) and (18), for any $t \in\left[1, q_{2}-1\right]$, we have

$$
\begin{equation*}
\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} \leq \frac{2(G+\lambda D)}{(t+1) \lambda} \tag{19}
\end{equation*}
$$

Note that for any $t \in\left[1, q_{2}-1\right], F_{t}^{\gamma}(\mathbf{x})$ is also $t \lambda$-smooth.

Then, we can bound A as

$$
\begin{align*}
& \sum_{t=1}^{q_{2}-1}\left(\tilde{f}_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\tilde{f}_{t}\left(\mathbf{x}_{t+1}^{*}\right)\right) \\
& \leq \sum_{t=1}^{q_{2}-1}(G+\lambda D)\left\|\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} \\
& \leq(G+\lambda D) \sum_{t=1}^{q_{2}-1}\left\|\mathbf{x}_{t}^{\gamma}-\hat{\mathbf{x}}_{t}^{*}\right\|_{2} \\
&+(G+\lambda D) \sum_{t=1}^{q_{2}-1}\left\|\hat{\mathbf{x}}_{t}^{*}-\hat{\mathbf{x}}_{t+1}^{*}\right\|_{2} \\
& \leq(G+\lambda D) \sum_{t=1}^{q_{2}-1} \sqrt{\frac{2\left(F_{t}^{\gamma}\left(\mathbf{x}_{t}^{\gamma}\right)-F_{t}^{\gamma}\left(\hat{\mathbf{x}}_{t}^{*}\right)\right)}{t \lambda}} \tag{20}\\
&+(G+\lambda D) \sum_{t=1}^{q_{2}-1} \frac{2(G+\lambda D)}{(t+1) \lambda} \\
& \leq(G+\lambda D) \sum_{t=1}^{q_{2}-1} \sqrt{\frac{4 D^{2}}{\gamma^{2}+2}} \\
& \quad+(G+\lambda D) \sum_{t=1}^{q_{2}-1} \frac{2(G+\lambda D)}{(t+1) \lambda} \\
& \leq 2(G+\lambda D) D+\frac{2(G+\lambda D)^{2} \ln (\gamma+1)}{\lambda}
\end{align*}
$$

where the fourth inequality is due to Lemma 3.
To bound B, we introduce the following lemma.
Lemma 5 (Lemma 6.6 of Garber and Hazan (2016)) Let $\left\{f_{t}(\mathbf{x})\right\}_{t=1}^{T}$ be a sequence of loss functions and let $\mathbf{x}_{t}^{*} \in$ $\operatorname{argmin}_{\mathbf{x} \in \mathcal{K}} \sum_{\tau=1}^{t} f_{t}(\mathbf{x})$ for any $t \in[T]$. Then, it holds that

$$
\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{*}\right)-\min _{\mathbf{x} \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(\mathbf{x}) \leq 0
$$

Applying Lemma 5 with the loss functions $\{\tilde{f}(\mathbf{x})\}_{t=0}^{q_{2}-1}$, we have

$$
\sum_{t=0}^{q_{2}-1}\left(\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)-\tilde{f}_{t}\left(\mathbf{x}^{*}\right)\right) \leq 0
$$

which further implies that

$$
\begin{align*}
B & =\sum_{t=1}^{q_{2}-1}\left(\tilde{f}_{t}\left(\hat{\mathbf{x}}_{t+1}^{*}\right)-\tilde{f}_{t}\left(\mathbf{x}^{*}\right)\right) \leq \tilde{f}_{0}\left(\mathbf{x}^{*}\right)-\tilde{f}_{0}\left(\hat{\mathbf{x}}_{1}^{*}\right) \tag{21}\\
& =\frac{\lambda}{2}\left\|\mathbf{x}^{*}-\mathbf{x}_{1}^{\gamma}\right\|_{2}^{2}-\frac{\lambda}{2}\left\|\hat{\mathbf{x}}_{1}^{*}-\mathbf{x}_{1}^{\gamma}\right\|_{2}^{2} \leq \frac{\lambda D^{2}}{2}
\end{align*}
$$

Substituting (20) and (21) into (16), we complete this proof.

Proof of Corollary 1

If $V_{T} \geq \sqrt{\frac{1}{T}}$, we can set $1 \leq \gamma=\left\lfloor\left(\frac{T}{V_{T}}\right)^{2 / 3}\right\rfloor \leq T$, and have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & 8 \sqrt{2} G D T^{2 / 3} V_{T}^{1 / 3}+2 T^{2 / 3} V_{T}^{1 / 3}
\end{aligned}
$$

Conversely, we can simply set $\gamma=T$ and achieve

$$
\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \leq 8 G D \sqrt{T}+2 \sqrt{T}
$$

Proof of Corollary 2

If $V_{T} \geq \frac{\ln (T+1)}{T}$, we can set $1 \leq \gamma=\left\lfloor\sqrt{\frac{T \ln (T+1)}{V_{T}}}\right\rfloor \leq T$, and have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \frac{4 T \sqrt{V_{T}}\left(c_{1}+c_{2} \ln (\gamma+1)\right)}{\sqrt{T \ln (T+1)}}+2 \sqrt{T V_{T} \ln (T+1)} \\
\leq & \left(4 c_{1}+4 c_{2}+2\right) \sqrt{T V_{T} \ln (T+1)}
\end{aligned}
$$

Conversely, we can simply set $\gamma=T$ and achieve

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & 2\left(c_{1}+c_{2} \ln (\gamma+1)\right)+2 \ln (T+1) \\
\leq & 2 c_{1}+\left(2 c_{2}+2\right) \ln (T+1)
\end{aligned}
$$

Proof of Theorem 3

First, for any $\gamma \in \mathcal{H}$, we have

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
= & \underbrace{\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}_{:=A_{\gamma}} \tag{22}\\
& +\underbrace{\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x})}_{:=B_{\gamma}}
\end{align*}
$$

To bound A_{γ}, we first introduce the following lemma.
Lemma 6 (Lemma 1 in Zhang, Lu, and Zhou (2018)) Under Assumptions 1 and 2, Algorithm 3 has

$$
\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\gamma \in \mathcal{H}}\left(\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)+\frac{1}{\tau} \ln \frac{1}{w_{1}^{\gamma}}\right) \leq \frac{\tau T G^{2} D^{2}}{8}
$$

Using Lemma 6 with $\tau=\sqrt{\frac{8}{T G^{2} D^{2}}}$, for any $\gamma \in \mathcal{H}$, we have

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right) \\
\leq & \frac{1}{\tau} \ln \frac{1}{w_{1}^{\gamma}}+\frac{\tau T G^{2} D^{2}}{8} \tag{23}\\
\leq & \sqrt{\frac{T G^{2} D^{2}}{8}}\left(1+\ln \frac{1}{w_{1}^{\gamma}}\right) \\
\leq & \sqrt{\frac{T G^{2} D^{2}}{8}}(1+2 \ln N) .
\end{align*}
$$

Then, we need to bound B_{γ}. If $V_{T} \geq \sqrt{\frac{1}{T}}$, we define $1 \leq$ $\gamma^{*}=\left\lfloor\left(\frac{T}{V_{T}}\right)^{2 / 3}\right\rfloor \leq T$. Because of

$$
\mathcal{H}=\left\{\gamma_{i}=2^{i} \mid i=0, \cdots, N\right\}
$$

where $N=\left\lfloor\log _{2}(T)\right\rfloor$, there must exist a $\gamma_{i} \in \mathcal{H}$ such that

$$
\gamma_{i} \leq \gamma^{*}<2 \gamma_{i}
$$

Therefore, for γ_{i}, we have

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma_{i}}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \frac{8 T G D}{\sqrt{\gamma_{i}}}+2 \gamma_{i} V_{T} \tag{24}\\
\leq & \frac{8 \sqrt{2} T G D}{\sqrt{\gamma^{*}}}+2 \gamma^{*} V_{T} \\
\leq & 16 G D T^{2 / 3} V_{T}^{1 / 3}+2 T^{2 / 3} V_{T}^{1 / 3}
\end{align*}
$$

where the first inequality is due to Theorem 1.
Conversely, we can simply set $\gamma^{*}=T$. Similarly, there must exist a $\gamma_{i} \in \mathcal{H}$ such that

$$
\gamma_{i} \leq \gamma^{*}<2 \gamma_{i}
$$

Therefore, we have

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma_{i}}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \frac{8 T G D}{\sqrt{\gamma_{i}}}+2 \gamma_{i} V_{T} \tag{25}\\
\leq & \frac{8 \sqrt{2} G D T}{\sqrt{\gamma^{*}}}+2 \gamma^{*} V_{T} \\
\leq & 8 \sqrt{2} G D \sqrt{T}+2 \sqrt{T}
\end{align*}
$$

Combining (22), (23), (24) and (25), we achieve

$$
\begin{array}{r}
\quad \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq \max \left\{c_{3} \sqrt{T}, c_{4} T^{2 / 3} V_{T}^{1 / 3}\right\} \\
\quad+\sqrt{\frac{T G^{2} D^{2}}{8}}(1+2 \ln N)
\end{array}
$$

where $c_{3}=8 \sqrt{2} G D+2$ and $c_{4}=16 G D+2$.

Proof of Theorem 4

This proof is similar as that of Theorem 3. First, it is not hard to verify that (22) still holds. So we only need to bound A_{γ} and B_{γ} in (22).

To bound A_{γ}, we introduce the following lemma.
Lemma 7 If $f_{t}(\mathbf{x})$ is λ-strongly convex for any $t \in[T]$ and Assumptions 1 and 2 hold, Algorithm 3 with $\tau=\frac{\lambda}{G^{2}}$ has

$$
\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\min _{\gamma \in \mathcal{H}} \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right) \leq \frac{2 G^{2}}{\lambda} \ln N
$$

where $N=\left\lfloor\log _{2}(T)\right\rfloor$.
Using Lemma 7, for any $\gamma \in \mathcal{H}$, we have

$$
\begin{equation*}
\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right) \leq \frac{2 G^{2}}{\lambda} \ln N \tag{26}
\end{equation*}
$$

Then, we bound B_{γ} by utilizing Theorem 2. If $V_{T} \geq$ $\frac{\ln (T+1)}{T}$, we define $1 \leq \gamma^{*}=\left\lfloor\sqrt{\frac{T \ln (T+1)}{V_{T}}}\right\rfloor \leq T$. Because

$$
\mathcal{H}=\left\{\gamma_{i}=2^{i} \mid i=0, \cdots, N\right\}
$$

where $N=\left\lfloor\log _{2}(T)\right\rfloor$, there must exist a $\gamma_{i} \in \mathcal{H}$ such that

$$
\gamma_{i} \leq \gamma^{*}<2 \gamma_{i}
$$

Therefore, for γ_{i}, we have

$$
\begin{align*}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma_{i}}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \frac{2 T\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)}{\gamma_{i}}+2 \gamma_{i} V_{T} \\
\leq & \frac{4 T\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)}{\gamma^{*}}+2 \gamma^{*} V_{T} \\
\leq & \frac{8 T \sqrt{V_{T}}\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)}{\sqrt{T \ln (T+1)}+2 \sqrt{T V_{T} \ln (T+1)}} \\
\leq & \left(8 c_{1}+8 c_{2}+2\right) \sqrt{T V_{T} \ln (T+1)} \tag{27}
\end{align*}
$$

where the first inequality is due to Theorem 2.
Conversely, we can simply set $\gamma^{*}=T$. Similarly, there must exist a $\gamma_{i} \in \mathcal{H}$ such that

$$
\gamma_{i} \leq \gamma^{*}<2 \gamma_{i}
$$

Therefore, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma_{i}}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \frac{2 T\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)}{\gamma_{i}}+2 \gamma_{i} V_{T} \\
\leq & \frac{4 T\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)}{\gamma^{*}}+2 \gamma^{*} V_{T} \\
\leq & 4\left(c_{1}+c_{2} \ln \left(\gamma_{i}+1\right)\right)+2 T V_{T} \\
\leq & 4 c_{1}+\left(4 c_{2}+2\right) \ln (T+1) .
\end{aligned}
$$

Combining (22), (26), (27) and (28), we achieve

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} \min _{\mathbf{x} \in \mathcal{K}} f_{t}(\mathbf{x}) \\
\leq & \max \left\{4 c_{1}+\left(4 c_{2}+2\right) \ln (T+1)\right. \\
& \left.\left(8 c_{1}+8 c_{2}+2\right) \sqrt{T V_{T} \ln (T+1)}\right\}+\frac{2 G^{2}}{\lambda} \ln N .
\end{aligned}
$$

Proof of Lemma 7

We will utilize the theoretical guarantee of the exponentially weighted average forecaster for exponentially concave (abbr. exp-concave) functions (Cesa-Bianchi and Lugosi 2006). So, we first introduce the standard definition of exp-concave functions (Cesa-Bianchi and Lugosi 2006).

Definition 3 Let $f(\mathbf{x}): \mathcal{K} \rightarrow \mathbb{R}$ be a function over \mathcal{K}. It is called α-exp-concave if $\exp (-\alpha f(\mathbf{x}))$ is concave over \mathcal{K}.

Furthermore, we introduce the following lemma, which reveals the relationship between strongly convex and expconcave functions.

Lemma 8 (Lemma 2 of Zhang et al. (2018)) Suppose $f(\mathbf{x})$: $\mathcal{K} \rightarrow \mathbb{R}$ is λ-strongly convex and $\|\nabla f(\mathbf{x})\|_{2} \leq G$ for all $\mathbf{x} \in \mathcal{K}$. Then, $f(\mathbf{x})$ is $\frac{\lambda}{G^{2}}$-exp-concave.

Note that we have set $\tau=\frac{\lambda}{G^{2}}$ in Algorithm 3 and each $f_{t}(\mathbf{x})$ is λ-strongly convex loss function for $t \in[T]$. Applying Lemma 8 , for any $t \in[T], f_{t}(\mathbf{x})$ is τ-exp-concave, which further implies that

$$
e^{-\tau f_{t}\left(\mathbf{x}_{t}\right)}=e^{-\tau f_{t}\left(\sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} \mathbf{x}_{t}^{\gamma}\right)} \geq \sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}
$$

where the last inequality is due to the concavity of $e^{-\tau f_{t}(\mathbf{x})}$ and Jensen's inequality.

Taking logarithm, we have

$$
f_{t}\left(\mathbf{x}_{t}\right) \leq \frac{-\ln \sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}{\tau}
$$

Then, for any $\gamma \in \mathcal{H}$, we have

$$
\begin{aligned}
& f_{t}\left(\mathbf{x}_{t}\right)-f_{t}\left(\mathbf{x}_{t}^{\gamma}\right) \\
\leq & \frac{-\ln \sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}{\tau}-\frac{-\ln e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}{\tau} \\
= & \frac{1}{\tau} \ln \frac{e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}{\sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}} \\
= & \frac{1}{\tau} \ln \left(\frac{1}{w_{t}^{\gamma}} \cdot \frac{w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}{\sum_{\gamma \in \mathcal{H}} w_{t}^{\gamma} e^{-\tau f_{t}\left(\mathbf{x}_{t}^{\gamma}\right)}}\right) \\
= & \frac{1}{\tau} \ln \frac{w_{t+1}^{\gamma}}{w_{t}^{\gamma}} .
\end{aligned}
$$

Therefore, for any $\gamma \in \mathcal{H}$, we have

$$
\begin{aligned}
& \sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}\right)-\sum_{t=1}^{T} f_{t}\left(\mathbf{x}_{t}^{\gamma}\right) \\
\leq & \frac{1}{\tau} \sum_{t=1}^{T}\left(\ln w_{t+1}^{\gamma}-\ln w_{t}^{\gamma}\right) \\
\leq & \frac{1}{\tau}\left(\ln w_{T+1}^{\gamma}-\ln w_{1}^{\gamma}\right) \\
\leq & -\frac{G^{2}}{\lambda} \ln w_{1}^{\gamma} \leq \frac{G^{2}}{\lambda} \ln \frac{N(N+1)}{C} \\
= & \frac{2 G^{2}}{\lambda} \ln N
\end{aligned}
$$

where the last equality is due to $C=1+\frac{1}{N}$.

